Applied Physics A

, Volume 102, Issue 4, pp 835–839 | Cite as

Intrinsic resistive switching and memory effects in silicon oxide



Resistive switching behaviors are described in silicon oxide (SiOx) systems employing vertical E/SiOx/E (E denotes the electrode) structures. The switching is largely independent of the electrode material and attributed to the intrinsic properties of SiOx. Based on the recent experimental observation (Yao et al. in Nano Lett. 10:4105, 2010) of a silicon filament embedded in the SiOx matrix, we further discuss the switching mechanism in light of the measured electrical phenomena. The set voltages are largely SiOx-thickness independent, consistent with the mechanistic picture of point switching in the silicon filament. The multi-state switching and shifts in the set voltages with respect to the reset voltages are consistent with an electrochemical redox process (Si ↔ SiOy) at the switching site.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Waser, M. Aono, Nat. Mater. 6, 833 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009) CrossRefGoogle Scholar
  3. 3.
    A. Sawa, Mater. Today 11, 28 (2008) CrossRefGoogle Scholar
  4. 4.
    M. Janousch, G.I. Meijer, U. Staub, B. Belley, S.F. Karg, B.P. Andreasson, Adv. Mater. 19, 2232 (2007) CrossRefGoogle Scholar
  5. 5.
    C. Schindler, M. Weides, M.N. Kozicki, R. Waser, Appl. Phys. Lett. 92, 122910 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    J.G. Simmon, R.R. Verderber, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 301, 77 (1967) ADSCrossRefGoogle Scholar
  7. 7.
    S. Furuta, T. Takahashi, Y. Naitoh, M. Horikawa, T. Shimizu, M. Ono, Jpn. J. Appl. Phys. 47, 1806 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Li, A. Sinitskii, J.M. Tour, Nat. Mater. 7, 966 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    B. Standley, W. Bao, H. Zhang, J. Bruck, C. Lau, M. Bockrath, Nano Lett. 8, 3345 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    J. Yao, L. Zhong, Z. Zhang, T. He, Z. Jin, P.J. Wheeler, D. Natelson, J.M. Tour, Small 5, 2910 (2009) CrossRefGoogle Scholar
  11. 11.
    J. Yao, Z. Sun, L. Zhong, D. Natelson, J.M. Tour, Nano Lett. 10, 4105 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    J. Yao, L. Zhong, D. Natelson, J.M. Tour, Appl. Phys. Lett. 93, 253101 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    X. Duan, Y. Huang, C.M. Lieber, Nano Lett. 2, 487 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    J. Yao, Z. Jin, L. Zhong, D. Natelson, J.M. Tour, ACS Nano 3, 4122 (2009) CrossRefGoogle Scholar
  15. 15.
    A. Beck, J.G. Bednorz, Ch. Gerber, C. Rossel, D. Widmer, Appl. Phys. Lett. 77, 139 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    F. Rochet, Ch. Poncey, G. Dufour, H. Roulet, C. Guillot, F. Sirotti, J. Non-Cryst. Solids 216, 148 (1997) ADSCrossRefGoogle Scholar
  17. 17.
    J. Yao, L. Zhong, D. Natelson, J.M. Tour, J. Am. Chem. Soc. (2010). doi:10.1021/ja108277r Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Applied Physics Program Through the Department of BioengineeringRice UniversityHoustonUSA
  2. 2.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  3. 3.Department of Computer ScienceRice UniversityHoustonUSA
  4. 4.Department of Physics and AstronomyRice UniversityHoustonUSA
  5. 5.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations