Applied Physics A

, Volume 103, Issue 3, pp 749–753 | Cite as

Enhanced broadband optical transmission in metallized woodpiles

  • R. Malureanu
  • A. Alabastri
  • W. Cheng
  • R. Kiyan
  • B. Chichkov
  • A. Andryieuski
  • A. Lavrinenko
Article

Abstract

We present an optimized isotropic metal deposition technique used for covering three-dimensional polymer structures with a 50 nm smooth silver layer. The technology allows fast and isotropic coating of complex 3D dielectric structures with thin silver layers. Transmission measurements of 3D metallized woodpiles reveal a new phenomenon of enhanced optical transmission in broadband range (up to 300 nm) in the near IR.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998) CrossRefGoogle Scholar
  2. 2.
    V.M. Shalaev, Transforming light. Science 322, 384–386 (2008) CrossRefGoogle Scholar
  3. 3.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 341, 977–980 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    T. Scheibel, R. Parthasarathy, G. Sawicki, X.-M. Lin, H. Jaeger, S.L. Lindquist, Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl. Acad. Sci. USA 100, 4527–4532 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    S. Lal, S.E. Clare, N.J. Halas, Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008) CrossRefGoogle Scholar
  6. 6.
    R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 78, 489–491 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, Th. Koschny, C.M. Soukoulis, Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartat, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31–37 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22, 132–134 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    J. Serbin, A. Ovsianikov, B. Chichkov, Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt. Express 12, 5221–5228 (2004) ADSCrossRefGoogle Scholar
  12. 12.
    A. Alú, N. Engheta, The quest for magnetic plasmons at optical frequencies. Opt. Express 17, 5723–5730 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    A. Andryieuski, R. Malureanu, A. Lavrinenko, Nested structures approach in designing an isotropic negative-index material for infrared. J. Eur. Opt. Soc., Rapid Publ. 4, 09003 (2009) CrossRefGoogle Scholar
  14. 14.
    M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nat. Mater. 7, 543–546 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    Y.S. Chen, A. Tal, D.B. Torrance, S.M. Kuebler, Fabrication and characterization of three-dimensional silver-coated polymeric microstructures. Adv. Funct. Mater. 16, 1739–1744 (2006) CrossRefGoogle Scholar
  16. 16.
    K. Kaneko, K. Yamamoto, S. Kawata, H. Xia, J.-F. Song, H.-B. Sun, Metal-nanoshelled three-dimensional photonic lattices. Opt. Lett. 33, 1999–2001 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, S. Kawata, Selective electroless plating to fabricate complex three-dimensional metallic micro/nanostructures. Appl. Phys. Lett. 88, 083110 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    N. Takeyasu, T. Tanaka, S. Kawata, Fabrication of 3D metal/polymer microstructures by site-selective metal coating. Appl. Phys. A 90, 205–209 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    R.W. Furness, The Practice of Plating on Plastics (Teddington Press, Surrey, 1968) Google Scholar
  20. 20.
    S.Q. Wang, H. Zhao, Y. Wang, C.M. Li, Z.H. Chen, V. Paulose, Silver-coated near field optical scanning microscope probes fabricated by silver mirror reaction. Appl. Phys. B, Lasers Opt. 92, 49–52 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    S.Y. Lin, J.G. Fleming, D.L. Hetherington, B.K. Smith, R. Biswas, K.M. Ho, M.M. Sigalas, W. Zubrzycki, S.R. Kurts, J. Bur, A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998) ADSCrossRefGoogle Scholar
  22. 22.
    A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Fasari, C. Fotakis, Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257–2262 (2008) CrossRefGoogle Scholar
  23. 23.
    A. Boltasseva, S.I. Bozhevolnyi, T. Nikolajsen, K. Leosson, Compact Bragg gratings for long-range surface plasmon polaritons. J. Lightwave Technol. 24, 912–918 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    M. Deubel, M. Wegener, S. Linden, G. von Freymann, Angle-resolved transmission spectroscopy of three-dimensional photonic crystals fabricated by direct laser writing. Appl. Phys. Lett. 87, 221104 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. Malureanu
    • 1
  • A. Alabastri
    • 1
    • 2
  • W. Cheng
    • 3
  • R. Kiyan
    • 3
  • B. Chichkov
    • 3
  • A. Andryieuski
    • 1
  • A. Lavrinenko
    • 1
  1. 1.DTU FotonikTechnical University of DenmarkCopenhagenDenmark
  2. 2.Dipartimento di FisicaPolitecnico di MilanoMilanItaly
  3. 3.Laser Zentrum HannoverHannoverGermany

Personalised recommendations