Applied Physics A

, Volume 103, Issue 3, pp 715–719 | Cite as

Bandwidth evaluation of dispersive transformation electromagnetics based devices



In this paper, the transient responses of some devices which are based on transformation electromagnetics are studied, such as invisible cloaks and concentrators, by using the Finite-Difference Time-Domain (FDTD) numerical technique. In particular, effects of the inherent losses as well as the coating size of the ideal cylindrical cloak on its bandwidth and cloaking performance are examined. In addition, it is demonstrated that the performance of transformation electromagnetics based devices is affected by the material parameters in the design, although they may behave nicely under monochromatic plane wave illuminations. The obtained results are of interest for the future practical implementation of these structures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780–1782 (2006) MathSciNetADSCrossRefMATHGoogle Scholar
  2. 2.
    U. Leonhardt, Optical conformal mapping. Science 312, 1777–1780 (2006) MathSciNetADSCrossRefMATHGoogle Scholar
  3. 3.
    D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006) MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    H. Chen, C.T. Chan, Transformation media that rotate electromagnetic fields. Appl. Phys. Lett. 90, 241105 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    M. Rahm et al., Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Zhao, C. Argyropoulos, Y. Hao, Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures. Opt. Express 16(9), 6717–6730 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    B. Zhang et al., Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave. Phys. Rev. Lett. 101, 063902 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    B. Ivsic, Z. Sipus, S. Hrabar, Analysis of uniaxial multilayer cylinders used for invisible cloak realization. IEEE Trans. Antennas Propag. 57(5), 1521–1527 (2009) MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    C. Argyropoulos, Y. Zhao, Y. Hao, A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks. IEEE Trans. Antennas Propag. 57(5), 1432–1441 (2009) MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    S.A. Cummer et al., Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method (Artech House, Norwood, 1995) MATHGoogle Scholar
  12. 12.
    V. Podolskiy, E. Narimanov, Near-sighted superlens. Opt. Lett. 30, 75 (2005) ADSCrossRefGoogle Scholar
  13. 13.
    C. Argyropoulos et al., Manipulating the loss in electromagnetic cloaks for perfect wave absorption. Opt. Express, 17(10), 8467–8475 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    A. Alù, N. Engheta, Cloaking a sensor. Phys. Rev. Lett. 102, 233901 (2009) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Queen Mary University of LondonLondonUK

Personalised recommendations