Applied Physics A

, Volume 103, Issue 3, pp 703–707 | Cite as

Localized radiative energy transfer from a plasmonic bow-tie nano-antenna to a magnetic thin film stack

  • K. SendurEmail author
  • A. Kosar
  • M. P. Menguc


Localized radiative energy transfer from a near-field emitter to a magnetic thin film structure is investigated. A magnetic thin film stack is placed in the near-field of the plasmonic nano-antenna to utilize the evanescent mode coupling between the nano-antenna and magnetic thin film stack. A bow-tie nano-optical antenna is excited with a tightly focused beam of light to improve near-field radiative energy transfer from the antenna to the magnetic thin film structure. A tightly focused incident optical beam with a wide angular spectrum is formulated using Richards–Wolf vector field equations. Radiative energy transfer is investigated using a frequency domain 3D finite element method solution of Maxwell’s equations. Localized radiative energy transfer between the near-field emitter and the magnetic thin film structure is quantified for a given optical laser power at various distances between the near-field emitter and magnetic thin film.


Radiative Heat Transfer Magnetic Thin Film Optical Antenna Radiative Energy Transfer Optical Power Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    T. McDaniel, W. Challener, K. Sendur, Issues in heat assisted perpendicular recording. IEEE Trans. Magn. 39, 1972–1979 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    K. Sendur, C. Peng, W. Challener, Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens. Phys. Rev. Lett. 94, 043901 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    A. Narayanaswamy, G. Chen, Surface modes for near field thermophotovoltaics. Appl. Phys. Lett. 82, 3544–3546 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    R.S. DiMatteo, P. Greiff, S.L. Finberg, K. Young-Waithe, H.K.H. Choy, M.M. Masaki, C.G. Fonstad, Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl. Phys. Lett. 79, 1894 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    Y.-F. Lu, B. Hu, Z.-H. Mai, W.-J. Wang, W.-K. Chim, T.-C. Chong, Laser-scanning probe microscope based nanoprocessing of electronics materials. Jpn. J. Appl. Phys. 40, 4395–4398 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    A. Chimmalgi, C.P. Grigoropoulos, K. Komvopoulos, Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy. J. Appl. Phys. 97, 104319 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    M. Francoeur, M.P. Menguc, Role of the fluctuational electrodynamics theory in near-field radiative heat transfer. J. Quant. Spectrosc. Radiat. Transf. 109, 280–293 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    M. Francoeur, M.P. Menguc, R. Vaillon, Near-field radiative heat transfer enhancement via surface phonon-polaritons coupling in thin films. Appl. Phys. Lett. 93, 043109 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    S. Shen, A. Narayanaswamy, G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, J.-J. Greffet, Radiative heat transfer at the nanoscale. Nat. Photonics 3, 514–517 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    P. Ben-Abdallah, K. Joulain, J. Drevillon, G. Domingues, Tailoring the local density of states of nonradiative field at the surface of nanolayered materials. Appl. Phys. Lett. 94, 153117 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    M. Francoeur, M.P. Menguc, R. Vaillon, Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    M. Francoeur, M.P. Menguc, R. Vaillon, Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons. J. Appl. Phys. 107, 034313 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    M. Francoeur, M.P. Menguc, R. Vaillon, Spectral tuning of near-field radiative heat flux between two thin silicon carbide films. J. Phys. D, Appl. Phys. 43, 075501 (2010) ADSGoogle Scholar
  16. 16.
    E.A. Hawes, J.T. Hastings, C. Crofcheck, M.P. Menguc, Spatial selective melting and evaporation of nanosized gold particles. Opt. Lett. 33, 1383–1385 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    A. Downes, D. Salter, A. Elfick, Heating effects in tip-enhanced optical microscopy. Opt. Express 14, 5216–5222 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    R.D. Grober, R.J. Schoelkopf, D.E. Prober, Optical antenna: towards a unit efficiency near-field optical probe. Appl. Phys. Lett. 70, 1354–1356 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    K. Sendur, W. Challener, Near-field radiation of bow-tie antennas and apertures at optical frequencies. J. Microsc. 210, 279–283 (2003) MathSciNetCrossRefGoogle Scholar
  20. 20.
    L. Novotny, Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, Optical antennas: resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003) ADSCrossRefGoogle Scholar
  22. 22.
    P. Muhlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    K. Sendur, E. Baran, Near-field optical power transmission of dipole nano-antennas. Appl. Phys. B 96, 325–335 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    E. Wolf, Electromagnetic diffraction in optical systems I. An integral representation of the image field. Proc. R. Soc. Lond. A 253, 349–357 (1959) ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    B. Richards, E. Wolf, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 253, 358–379 (1959) ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998) Google Scholar
  27. 27.
    C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989) Google Scholar
  28. 28.
    D.K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, New York, 1983) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Sabanci UniversityIstanbulTurkey
  2. 2.Ozyegin UniversityIstanbulTurkey
  3. 3.University of KentuckyLexingtonUSA

Personalised recommendations