Advertisement

Applied Physics A

, Volume 103, Issue 3, pp 615–617 | Cite as

Plasmonic crystal waveguides

  • Slobodan M. Vuković
  • Zoran Jakšić
  • Ilya V. Shadrivov
  • Yuri S. Kivshar
Article

Abstract

We study the properties of electromagnetic waves propagating along the waveguides with a periodic core created by alternating metal and dielectric layers, the so-called quasi-one-dimensional plasmonic crystal waveguides. Such waveguides can be symmetric or asymmetric, depending on the cladding or substrate material properties, as well as on the termination of the periodic structure. We analyze the dispersion characteristics as well as the profiles of the guided modes for several types of waveguide structure.

Keywords

Surface Plasmon Polaritons Uniaxial Crystal Bloch Vector Planar Lens Plasmonic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819), 1686 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    Y. Xiong, Z. Liu, X. Zhang, Projecting deep-subwavelength patterns from diffraction-limited masks using metal–dielectric multilayers. Appl. Phys. Lett. 93(11), 111116 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    S. Thongrattanasiri, V.A. Podolskiy, Hypergratings: Nanophotonics in planar anisotropic metamaterials. Opt. Lett., 34(7), 890 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    P.B. Catrysse, G. Veronis, H. Shin, J.T. Shen, S. Fan, Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits. Appl. Phys. Lett., 88(3), 1 (2006) CrossRefGoogle Scholar
  5. 5.
    L. Verslegers, P.B. Catrysse, Z. Yu, J.S. White, E.S. Barnard, M.L. Brongersma, S. Fan, Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett., 9(1), 235 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    J. Elser, V.A. Podolskiy, Scattering-free plasmonic optics with anisotropic metamaterials. Phys. Rev. Lett. 100(6), 066402 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Vukovic, I.V. Shadrivov, Y.S. Kivshar, Surface Bloch waves in metamaterial and metal-dielectric superlattices. Appl. Phys. Lett. 95(4), 041902 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311(5758), 189 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    A. Alù, N. Engheta, All optical metamaterial circuit board at the nanoscale. Phys. Rev. Lett. 103(14), 143902 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Z. Jakšić, M. Maksimović, M. Sarajlić, Silver-silica transparent metal structures as bandpass filters for the ultraviolet range. J. Opt. A, Pure Appl. Opt., 7(1), 51 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    S. Feng, J. Elson, P. Overfelt, Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes. Opt. Express, 13(11), 4113 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    P. Yeh, A. Yariv, C.-S. Hong, Electromagnetic propagation in periodic stratified media. I. General theory. J. Opt. Soc. Am., 67(4), 423 (1977) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Slobodan M. Vuković
    • 1
  • Zoran Jakšić
    • 2
  • Ilya V. Shadrivov
    • 3
  • Yuri S. Kivshar
    • 3
  1. 1.Institute of PhysicsUniversity of BelgradeZemunSerbia
  2. 2.Institute of Chemistry, Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  3. 3.Nonlinear Physics Centre, Research School of Physics and EngineeringThe Australian National UniversityCanberraAustralia

Personalised recommendations