Applied Physics A

, Volume 103, Issue 3, pp 591–595 | Cite as

Effects of anisotropic disorder in an optical metamaterial

  • C. HelgertEmail author
  • C. Rockstuhl
  • C. Etrich
  • E.-B. Kley
  • A. Tünnermann
  • F. Lederer
  • T. Pertsch


We consider the effect of disorder in one transverse dimension, termed anisotropic disorder, on the optical properties of a metamaterial consisting of cut-wire-pair meta-atoms. The work comprises experimental and numerical studies. The appropriate samples were fabricated and their optical properties quantified in the far-field. For comparison large-scale rigorous numerical simulations were performed. We observe excellent agreement between experiment and theory. Based on our results we reveal how the electric dipole interactions between adjacent meta-atoms affect the overall spectral response of the metamaterial. Our main observation is a polarization-sensitive degradation of the symmetric resonance for anisotropic disorder.


Symmetric Resonance Mode Dispersion Relation Positional Disorder Electric Dipole Interaction Optical Metamaterial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Engheta, R. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley/IEEE Press, New York, 2006) Google Scholar
  2. 2.
    C.  Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E.-B. Kley, A. Chipouline, A. Tünnermann, F. Lederer, T. Pertsch, Polarization-independent negative-index metamaterial in the near infrared. Opt. Lett. 34(5), 704–706 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    T. Paul, C. Rockstuhl, F. Lederer, Advanced optical metamaterials. Adv. Mater. 22, 2354–2357 (2010) CrossRefGoogle Scholar
  4. 4.
    N. Shalkevich, A. Shalkevich, L. Si-Ahmed, T. Bürgi, Reversible formation of gold nanoparticle–surfactant composite assemblies for the preparation of concentrated colloidal solutions. Phys. Chem. Chem. Phys. 11, 10175–10179 (2009) CrossRefGoogle Scholar
  5. 5.
    T. Pakizeh, A. Dmitriev, M.S. Abrishamian, N. Granpayeh, M. Käll, Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. J. Opt. Soc. Am. B 25(4), 659–667 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    D. Pawlak, S. Turczynski, M. Gajc, K. Kolodziejak, R. Diduszko, K. Rozniatowski, J. Smalc, I. Vendik, How far are we from making metamaterials by self-organization? The microstructure of highly anisotropic particles with an SRR-like geometry. Adv. Funct. Mater. 20, 1116–1124 (2010) CrossRefGoogle Scholar
  7. 7.
    J. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. Halas, V. Manoharan, P. Nordlander, G. Shvets, F. Capasso, Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    K. Aydin, K. Guven, N. Katsarakis, C. Soukoulis, E. Ozbay, Effect of disorder on magnetic resonance band gap of split-ring resonator structures. Opt. Express 12(24), 5896–5901 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    M. Gorkunov, S.A. Gredeskul, I.V. Shadrivov, Y.S. Kivshar, Effect of microscopic disorder on magnetic properties of metamaterials. Phys. Rev. E 73, 056605 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    N. Papasimakis, V.A. Fedotov, Y.H. Fu, D.P. Tsai, N.I. Zheludev, Coherent and incoherent metamaterials and order-disorder transitions. Phys. Rev. B 80, 041102(R) (2009) ADSCrossRefGoogle Scholar
  11. 11.
    R. Singh, X. Lu, J. Gu, Z. Tian, W. Zhang, Random terahertz metamaterials. J. Opt. 12, 015101 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. A 78, 043811 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    G. Dolling, C. Enkrich, M. Wegener, F.J. Zhou, C.M. Soukoulis, S. Linden, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 30(23), 3198–4000 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    V. Shalaev, W. Cai, U. Chettiar, H. Yuan, A. Sarychev, V. Drachev, A. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30(24), 3356–3358 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tünnermann, F. Lederer, T. Pertsch, Effective properties of amorphous metamaterials. Phys. Rev. B 79, 233107 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    T. Paul, C. Rockstuhl, C. Menzel, F. Lederer, Anomalous refraction, diffraction, and imaging in metamaterials. Phys. Rev. B 79, 115430 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, H. Giessen, Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials. Opt. Lett. 33(8), 848–850 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005) Google Scholar
  19. 19.
    R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, K. Kern, Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8(10), 3155–3159 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    D.J. Cho, F. Wang, X. Zhang, Y.R. Shen, Contribution of the electric quadrupole resonance in optical metamaterials. Phys. Rev. B 78, 121101(R) (2008) ADSGoogle Scholar
  21. 21.
    P. Mühlschlegel, H. Eisler, O. Martin, B. Hecht, D. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    C. Haynes, A. McFarland, L. Zhao, R. Van Duyne, G. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, M. Käll, Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J. Phys. Chem. B 107(30), 7337–7342 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Helgert
    • 1
    Email author
  • C. Rockstuhl
    • 2
  • C. Etrich
    • 1
  • E.-B. Kley
    • 1
  • A. Tünnermann
    • 1
  • F. Lederer
    • 2
  • T. Pertsch
    • 1
  1. 1.Institute of Applied PhysicsFriedrich-Schiller-UniversitätJenaGermany
  2. 2.Institute of Condensed Matter Theory and Solid State OpticsFriedrich-Schiller-UniversitätJenaGermany

Personalised recommendations