Applied Physics A

, Volume 103, Issue 3, pp 575–579 | Cite as

Phonon considerations in the reduction of thermal conductivity in phononic crystals

  • P. E. HopkinsEmail author
  • L. M. Phinney
  • P. T. Rakich
  • R. H. OlssonIII
  • I. El-Kady


Periodic porous structures offer unique material solutions to thermoelectric applications. With recent interest in phonon band gap engineering, these periodic structures can result in reduction of the phonon thermal conductivity due to coherent destruction of phonon modes characteristic in phononic crystals. In this paper, we numerically study phonon transport in periodic porous silicon phononic crystal structures. We develop a model for the thermal conductivity of phononic crystal that accounts for both coherent and incoherent phonon effects, and show that the phonon thermal conductivity is reduced to less than 4% of the bulk value for Si at room temperature. This has substantial impact on thermoelectric applications, where the efficiency of thermoelectric materials is inversely proportional to the thermal conductivity.


Thermal Conductivity Porous Silicon Thermoelectric Material Phonon Dispersion Phononic Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, J.R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    G. Chen, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transf. 119, 220–229 (1997) CrossRefGoogle Scholar
  4. 4.
    M.S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S.B. Cronin, T. Koga, J.Y. Ying, G. Chen, The promise of low-dimensional thermoelectric materials. Microscale Thermophys. Eng. 3, 89–100 (1999) CrossRefGoogle Scholar
  5. 5.
    S. Riffat, X. Ma, Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 23, 913–935 (2003) CrossRefGoogle Scholar
  6. 6.
    G. Benedetto, L. Boarino, R. Spangnolo, Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method. Appl. Phys. A, Mater. Sci. Process., 64, 155–159 (1997) ADSCrossRefGoogle Scholar
  7. 7.
    U. Bernini, R. Bernini, P. Maddalena, E. Massera, P. Rucco, Determination of thermal diffusivity of suspended porous silicon films by thermal lens techniques. Appl. Phys. A, Mater. Sci. Process., 81, 399–404 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    D. Song, G. Chen, Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84, 687–689 (2004) ADSCrossRefGoogle Scholar
  9. 9.
    P.E. Hopkins, P.M. Norris, L.M. Phinney, S.A. Policastro, R.G. Kelly, Thermal conductivity in nanoporous gold films during electron–phonon nonequilibrium. J. Nanomater. 2008, 418050 (2008). doi: 10.1155/2008/418050 CrossRefGoogle Scholar
  10. 10.
    R.H. Olsson III, I. El-Kady, Microfabricated phononic crystals devices and applications. Meas. Sci. Technol. 20, 012002 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    M.G. Holland, Analysis of lattice thermal conductivity. Phys. Rev. 132, 2461–2471 (1963) ADSCrossRefGoogle Scholar
  12. 12.
    P.E. Hopkins, P.T. Rakich, R.H. Olsson III, I. El-Kady, L.M. Phinney, Origin of reduction in phonon thermal conductivity of microporous solids. Appl. Phys. Lett. 95, 161902 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    G. Nilsson, G. Nelin, Study of the homology between silicon and germanium by thermal-neutron spectrometry. Phys. Rev. B, Condens. Matter Mater. Phys. 6, 3777–3786 (1972) ADSCrossRefGoogle Scholar
  14. 14.
    B.N. Brockhouse, Lattice vibrations in silicon and germanium. Phys. Rev. Lett. 2, 256–258 (1959) ADSCrossRefGoogle Scholar
  15. 15.
    G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, New York, 2005) Google Scholar
  16. 16.
    C.Y. Ho, R.W. Powell, P.E. Liley, Thermal conductivity of the elements. J. Phys. Chem. Ref. Data 1, 279–422 (1972) CrossRefGoogle Scholar
  17. 17.
    A.S. Henry, G. Chen, Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5, 1–12 (2008) CrossRefGoogle Scholar
  18. 18.
    A.D. Mcconnell, K.E. Goodson, Thermal conduction in silicon micro- and nanostructures. Annu. Rev. Heat Transf. 14, 129–168 (2005) Google Scholar
  19. 19.
    A.D. Mcconnell, S. Uma, K.E. Goodson, Thermal conductivity of doped polysilicon layers. J. Microelectromech. Syst. 10, 360–369 (2001) CrossRefGoogle Scholar
  20. 20.
    D.E. Gray, American Institute of Physics Handbook (McGraw-Hill, New York, 1972) Google Scholar
  21. 21.
    A. Eucken, Die warmeleitfahigkeit keramischer feuerfester stoffe: Ihre berechnung aus der warmeleitfahigkeit der bestandteile (Thermal conductivity of ceramic refractory materials: calculations from thermal conductivity of constituents). Forsch. Geb. Ing.wes. (Ausg. B) 3/4, 353 (1932) Google Scholar
  22. 22.
    N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relation. Phys. Rev. B, Condens. Matter Mater. Phys. 68, 113308 (2003) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • P. E. Hopkins
    • 1
    Email author
  • L. M. Phinney
    • 1
  • P. T. Rakich
    • 1
  • R. H. OlssonIII
    • 1
  • I. El-Kady
    • 1
    • 2
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations