Applied Physics A

, Volume 103, Issue 1, pp 113–121 | Cite as

Superheating in liquid and solid phases during femtosecond-laser pulse interaction with thin metal film

Article

Abstract

Superheating of the liquid phase caused by non-equilibrium evaporation during femtosecond-laser processing of a thin metal film is investigated by adopting the wave hypothesis along with the two-temperature model. The simulation results show that the superheating in the liquid occurs shortly after the evaporation. For a 100-fs laser pulse of 0.7 J/cm2, the maximum degree of superheating in liquid can reach 600 K. The superheating in solid can also be captured in the current model, which can be as high as 300 K. The effects of laser fluence, pulse duration and film thickness on the degree of superheating were studied. A higher laser fluence will increase the degree of superheating in liquid significantly but has little effect for the solid part. In the range adopted in the current work, the pulse duration has little effect on the degree of superheating in both liquid and solid phases.

Nomenclature

Be

coefficient for electron heat capacity (J/m3 K2)

C

heat capacity (J/m3 K)

c

speed of sound (m/s)

cp

specific heat (J/kg K)

G

electron-lattice coupling coefficient (W/m3 K)

h

latent heat of phase change (J/kg)

J

heat source fluence (J/m2)

k

thermal conductivity (W/m K)

L

thickness of the metal film (m)

M

molar mass (kg/kmol)

p

pressure (Pa)

q

heat flux (W/m2)

R

reflectivity

Rg

specific gas constant (J/kg K)

Ru

universal gas constant (J/kmol K)

s

interfacial location (m)

S

intensity of the internal heat source (W/m3)

t

time (s)

tp

pulse width (s)

T

temperature (K)

TF

Fermi temperature (K)

Tm

melting point (K)

u

interfacial velocity (m/s)

V0

interfacial velocity factor (m/s)

x

coordinate (m)

Greek Symbols

δ

optical penetration depth (m)

δb

ballistic range (m)

ε

total emissivity

ρ

density (kg/m3)

σ

Stefan-Boltzmann constant (W/m2 K4)

τ

variable of integration that denotes temperature (K)

Superscripts

0

last time step

Subscripts

e

electron

eq

thermal equilibrium state

i

initial condition

l

lattice

liquid

ℓv

liquid–vapor interface

R

thermal radiation

s

solid

sℓ

solid–liquid interface

sur

surface

ambient environment

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974) ADSGoogle Scholar
  2. 2.
    T.Q. Qiu, C.L. Tien, J. Heat Transf. 115, 835 (1993) CrossRefGoogle Scholar
  3. 3.
    D.Y. Tzou, Macro- to Microscale Heat Transfer (Taylor & Francis, Washington, 1997) Google Scholar
  4. 4.
    D.Y. Tzou, in Handbook of Numerical Heat Transfer, 2nd edn., ed. by W.J. Minkowycz, E.M. Sparrow, J.Y. Murthy (Wiley, Hoboken, 2006) Google Scholar
  5. 5.
    L. Jiang, H.L. Tsai, J. Heat Transf. 127, 1167 (2005) CrossRefGoogle Scholar
  6. 6.
    J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 49, 307 (2006) CrossRefMATHGoogle Scholar
  7. 7.
    D. Von Der Linde et al., in Materials Research Society Symposia Proceedings, vol. 74, (Materials Research Society, Warrendale 1987), p. 103 Google Scholar
  8. 8.
    Y. Zhang, J.K. Chen, J. Heat Transf. 130, 062401 (2008) CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, J.K. Chen, Appl. Phys. A, Mater. Sci. Process. 88, 289 (2007) CrossRefADSGoogle Scholar
  10. 10.
    J.K. Chen, W.P. Latham, J.E. Beraun, J. Laser Appl. 17, 63 (2005) CrossRefGoogle Scholar
  11. 11.
    S.I. Anisimov, V.A. Khokhlov, Instabilities in Laser–Matter Interaction (CRC Press, Boca Raton, 1995) Google Scholar
  12. 12.
    I.H. Chowdhury, X. Xu, Numer. Heat Transf., a Appl. 44, 219 (2003) CrossRefADSGoogle Scholar
  13. 13.
    J. Huang, Y. Zhang, J.K. Chen, Int. J. Heat Mass Transf. 52, 3091 (2009) CrossRefMATHGoogle Scholar
  14. 14.
    J. Huang, Y. Zhang, J.K. Chen, Appl. Phys. A, Mater. Sci. Process. 95, 643 (2009) CrossRefADSGoogle Scholar
  15. 15.
    Y. Okano et al., Appl. Surf. Sci. 197–198, 281 (2002) CrossRefGoogle Scholar
  16. 16.
    S.A. Pikuz et al., JETP Lett. 66, 480 (1997) CrossRefADSGoogle Scholar
  17. 17.
    A.D. Rakhel, G.S. Sarkisov, Int. J. Thermophys. 25, 1215 (2004) CrossRefADSGoogle Scholar
  18. 18.
    M. Boivineau, G. Pottlacher, Int. J. Mater. Prod. Technol. 26, 217 (2006) Google Scholar
  19. 19.
    B.M. Novac et al., in PPPS-2007—Pulsed Power Plasma Science 2007 (2007), p. 1004 Google Scholar
  20. 20.
    C.E. Hollandsworth et al., J. Appl. Phys. 84, 4992 (1998) CrossRefADSGoogle Scholar
  21. 21.
    M.J. Taylor, J. Phys. D, Appl. Phys. 35, 700 (2002) CrossRefADSGoogle Scholar
  22. 22.
    F.D. Bennett, Phys. Fluids 8, 1425 (1965) CrossRefGoogle Scholar
  23. 23.
    F.D. Bennett, in Physics of High Energy Density, ed. by P. Caldirola, H. Knoepfel (Academic Press, New York, 1971) Google Scholar
  24. 24.
    L. Harris, A.L. Loeb, J. Opt. Soc. Am. 43, 1114 (1953) CrossRefADSGoogle Scholar
  25. 25.
    S.I. Anisimov, B. Rethfeld, in Proceedings of SPIE—The International Society for Optical Engineering (1997), pp. 192 Google Scholar
  26. 26.
    L.-S. Kuo, T. Qiu, in ASME National Heat Transfer Conference (ASME, New York, 1996), p. 149 Google Scholar
  27. 27.
    S.S. Wellershoff et al., Appl. Phys. A, Mater. Sci. Process. 69, S99 (1999) ADSGoogle Scholar
  28. 28.
    P.G. Klemens, R.K. Williams, Int. Met. Rev. 31, 197 (1986) CrossRefGoogle Scholar
  29. 29.
    A. Faghri, Y. Zhang, Transport Phenomena in Multiphase Systems (Elsevier, Burlington, 2006) Google Scholar
  30. 30.
    R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, (Interscience, New York, 1976), vol. 21, p. 92 MATHGoogle Scholar
  31. 31.
    F.D. Bennett, in High Temperature Physics and Chemistry, ed. by C.A. Rouse (Pergamon, Elmsford, 1968), p. 1 Google Scholar
  32. 32.
    G.D. Kahl, Phys. Rev. 155, 78 (1967) CrossRefADSGoogle Scholar
  33. 33.
    I. Barin, Thermochemical Data of Pure Substance, Part I (VCH, New York, 1993) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations