Zone plate focused soft X-ray lithography
- 134 Downloads
- 17 Citations
Abstract
The zone plate focused soft X-rays of a scanning transmission X-ray microscope have been used to pattern poly(methyl methacrylate) and poly(dimethylglutarimide) films by a direct write method which is analogous to lithography with a focused electron beam. The lithographic characteristics of both polymers have been determined for 300 eV X-rays. With low doses (1 MGy), developed lines 40±5 nm wide were created in poly(methyl methacrylate). At higher doses an exposure spreading phenomenon substantially increases the lateral dimensions of the developed patterns. The spreading mechanism has been identified as the point-spread function of the zone plate lens. The performance of focused soft X-ray lithography is compared to other direct write methods. The practicality of a dedicated focused soft X-ray writer instrument is discussed.
Keywords
Atomic Force Microscopy PMMA Scan Electron Micro Zone Plate MIBKPreview
Unable to display preview. Download preview PDF.
References
- 1.W.H.F. Talbot, British Patent 565 (1852) Google Scholar
- 2.M. Hatzakis, J. Electrochem. Soc. 116, 1033 (1969) CrossRefGoogle Scholar
- 3.S.-M. Park, Y.S. Huh, H.G. Craighead, D. Erickson, Proc. Natl. Acad. Sci. USA 106, 15549 (2009) CrossRefADSGoogle Scholar
- 4.A. Bingham, Y. Zhao, D. Grischkowsky, Appl. Phys. Lett. 87, 051101 (2005) CrossRefADSGoogle Scholar
- 5.E.W. Becker, W. Ehrfeld, D. Münchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H.J. Michel, R.V. Siemens, Naturwissenschaften 69, 520 (1982) CrossRefADSGoogle Scholar
- 6.W. Chao, J. Kim, S. Rekawa, P. Fischer, E.H. Anderson, Opt. Express 17, 17669 (2009) CrossRefADSGoogle Scholar
- 7.A.D. Wilson, IBM J. Res. Dev. 37, 299 (1993) CrossRefGoogle Scholar
- 8.D.P. Sanders, Chem. Rev. 110, 321 (2010) CrossRefGoogle Scholar
- 9.C.W. Gwyn, R. Stulen, D. Sweeney, D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998) CrossRefGoogle Scholar
- 10.G. Möllenstedt, R. Speidel, Phys. Bl. 16, 192 (1960) Google Scholar
- 11.L. Li, R.R. Gattass, E. Gershgoren, H. Hwang, J.T. Fourkas, Science 324, 910 (2009) CrossRefADSGoogle Scholar
- 12.V.V. Aristov, in X-ray Microscopy II, ed. by D. Sayre, M. Howells, J. Kirz, H. Rarback (Springer, Berlin, 1988) Google Scholar
- 13.R.L. Seliger, R.L. Kubena, R.D. Olney, J.W. Ward, V. Wang, J. Vac. Sci. Technol. 16, 1610 (1979) CrossRefADSGoogle Scholar
- 14.A.E. Brennemann, A.V. Brown, M. Hatzakis, A.J. Speth, R.F.M. Thornley, IBM J. Res. Dev. 11, 520 (1967) CrossRefGoogle Scholar
- 15.G. Schmahl, D. Rudolph, Optik 29, 577 (1969) ADSGoogle Scholar
- 16.B. Niemann, D. Rudolph, G. Schmahl, Appl. Opt. 15, 1883 (1976) CrossRefADSGoogle Scholar
- 17.A.L.D. Kilcoyne, T. Tyliszczak, W.F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E.G. Rightor, G.E. Mitchell, A.P. Hitchcock, L. Yang, T. Warwick, H. Ade, J. Synchrotron Radiat. 10, 125 (2003) CrossRefGoogle Scholar
- 18.K.V. Kaznatcheev, Ch. Karunakaran, U.D. Lanke, S.G. Urquhart, M. Obst, A.P. Hitchcock, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 582, 96 (2007) CrossRefADSGoogle Scholar
- 19.J. Raabe, G. Tzvetkov, U. Flechsig, M. Böge, A. Jaggi, B. Sarafimov, M.G.C. Vernooij, T. Huthwelker, H. Ade, D. Kilcoyne, T. Tyliszczak, R.H. Fink, C. Quitmann, Rev. Sci. Instrum. 79, 113704 (2008) CrossRefADSGoogle Scholar
- 20.D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation Principles and Applications (Cambridge University Press, Cambridge, 1999) Google Scholar
- 21.W. Chao, private communication Google Scholar
- 22.X. Zhang, C. Jacobsen, S. Lindaas, S. Williams, J. Vac. Sci. Technol. B 13, 1477 (1995) CrossRefGoogle Scholar
- 23.R. Larciprete, L. Gregoratti, M. Danailov, R.M. Montereali, F. Bonfigli, M. Kiskinova, Appl. Phys. Lett. 80, 3862 (2002) CrossRefADSGoogle Scholar
- 24.J. Wang, H.D.H. Stöver, A.P. Hitchcock, T. Tyliszczak, J. Synchrotron Radiat. 14, 181 (2007) CrossRefGoogle Scholar
- 25.J. Wang, H.D.H. Stöver, A.P. Hitchcock, J. Phys. Chem. C 111, 16330 (2007) CrossRefGoogle Scholar
- 26.A.G. Caster, S. Kowarik, A.M. Schwartzberg, S.R. Leone, A. Tivanski, M.K. Gilles, J. Vac. Sci. Technol. B 28, 1304 (2010) CrossRefGoogle Scholar
- 27.T. Warwick, H. Ade, D. Kilcoyne, M. Kritscher, T. Tyliszczak, S. Fakra, A. Hitchcock, P. Hitchcock, H. Padmore, J. Synchrotron Radiat. 9, 254 (2002) CrossRefGoogle Scholar
- 28.R.W. Johnstone, I.G. Foulds, M.V. Pallapa, A.M. Parameswaran, J. Micro/Nanolithogr. MEMS MOEMS 7, 043006 (2008) CrossRefGoogle Scholar
- 29.A.C. Henry, R.L. McCarley, S. Das, C. Khan Malek, D.S. Poche, Microsyst. Technol. 4, 104 (1998) CrossRefGoogle Scholar
- 30.D.L. Spears, H.I. Smith, Electron. Lett. 8, 102 (1972) CrossRefGoogle Scholar
- 31.J.S. Greeneich, J. Electrochem. Soc. 122, 970 (1975) CrossRefGoogle Scholar
- 32.M. Hatzakis, J. Polym. Sci. 23, 73 (1974) Google Scholar
- 33.J. Wang, C. Morin, L. Li, A.P. Hitchcock, A. Scholl, A. Doran, J. Electron Spectrosc. Relat. Phenom. 170, 25 (2009) CrossRefGoogle Scholar
- 34.J.S. Greeneich, J. Electrochem. Soc. 121, 1669 (1974) CrossRefGoogle Scholar
- 35.R.E. Burge, M.T. Browne, P. Charalambous, Microelectron. Eng. 6, 227 (1987) CrossRefGoogle Scholar
- 36.R. Klauser, I.-H. Hong, S.-C. Wang, M. Zharnikov, A. Paul, A. Gölzhäuser, A. Terfort, T.J. Chuang, J. Phys. Chem. B 107, 13133 (2003) CrossRefGoogle Scholar
- 37.A.D. Dubner, A. Wagner, J.P. Levin, J. Mauer, J. Vac. Sci. Technol. B 10, 3212 (1992) CrossRefGoogle Scholar
- 38.G. Compagnini, G.G.N. Angilella, A. Raudino, O. Puglisi, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 175–177, 559 (2001) CrossRefGoogle Scholar
- 39.M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999) Google Scholar
- 40.M.D. Galus, E. Moon, H.I. Smith, R. Menon, J. Vac. Sci. Technol. B 24, 2960 (2006) CrossRefGoogle Scholar
- 41.A.N. Broers, IBM J. Res. Dev. 32, 502 (1988) CrossRefGoogle Scholar
- 42.A.N. Broers, A.C.F. Hoole, J.M. Ryan, Microelectron. Eng. 32, 131 (1996) CrossRefGoogle Scholar
- 43.M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979) CrossRefGoogle Scholar
- 44.S. Yasin, D.G. Hasko, H. Ahmed, Appl. Phys. Lett. 78, 2760 (2001) CrossRefADSGoogle Scholar
- 45.W. Hu, K. Sarveswaran, M. Lieberman, G.H. Bernstein, J. Vac. Sci. Technol. B 22, 1711 (2004) CrossRefGoogle Scholar
- 46.E. Lavallée, J. Beauvais, J. Beerens, J. Vac. Sci. Technol. B 16, 1255 (1998) CrossRefGoogle Scholar
- 47.N. Arjmandi, L. Lagae, G. Borghs, J. Vac. Sci. Technol. B 27, 1915 (2009) CrossRefGoogle Scholar
- 48.G. Schmahl, D. Rudolph, D. Neimann, in Proc. Eight Int. Conf. on X-ray Optics and Microanalysis, Boston (1977), p. 60A Google Scholar
- 49.S. Heim Rehbein, P. Guttmann, S. Werner, G. Schneider, Phys. Rev. Lett. 103, 110801 (2009) CrossRefADSGoogle Scholar
- 50.H. Mimura, S. Matsuyama, H. Yumoto, Jpn. J. Appl. Phys. 44, L539 (2005) CrossRefADSGoogle Scholar
- 51.C.R.K. Marrian, E.A. Dobisz, J.A. Dagata, J. Vac. Sci. Technol. B 10, 2877 (1992) CrossRefGoogle Scholar
- 52.P.A. Peterson, Z.J. Radzimski, S.A. Schwalm, P.E. Russell, J. Vac. Sci. Technol. B 10, 3088 (1992) CrossRefGoogle Scholar
- 53.W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson, D.T. Attwood, Nature 435, 1210 (2005) CrossRefADSGoogle Scholar
- 54.A.P. Hitchcock, J.J. Dynes, G. Johansson, J. Wang, G. Botton, Micron 39, 741 (2008) CrossRefGoogle Scholar
- 55.H.I. Smith, J. Vac. Sci. Technol. B 14, 4318 (1996) CrossRefGoogle Scholar
- 56.A. Pépin, D. Decanini, Y. Chen, J. Vac. Sci. Technol. B 18, 2981 (2000) CrossRefGoogle Scholar