Advertisement

Applied Physics A

, Volume 103, Issue 1, pp 1–11 | Cite as

Zone plate focused soft X-ray lithography

  • Adam F. G. Leontowich
  • Adam P. Hitchcock
Invited paper

Abstract

The zone plate focused soft X-rays of a scanning transmission X-ray microscope have been used to pattern poly(methyl methacrylate) and poly(dimethylglutarimide) films by a direct write method which is analogous to lithography with a focused electron beam. The lithographic characteristics of both polymers have been determined for 300 eV X-rays. With low doses (1 MGy), developed lines 40±5 nm wide were created in poly(methyl methacrylate). At higher doses an exposure spreading phenomenon substantially increases the lateral dimensions of the developed patterns. The spreading mechanism has been identified as the point-spread function of the zone plate lens. The performance of focused soft X-ray lithography is compared to other direct write methods. The practicality of a dedicated focused soft X-ray writer instrument is discussed.

Keywords

Atomic Force Microscopy PMMA Scan Electron Micro Zone Plate MIBK 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.H.F. Talbot, British Patent 565 (1852) Google Scholar
  2. 2.
    M. Hatzakis, J. Electrochem. Soc. 116, 1033 (1969) CrossRefGoogle Scholar
  3. 3.
    S.-M. Park, Y.S. Huh, H.G. Craighead, D. Erickson, Proc. Natl. Acad. Sci. USA 106, 15549 (2009) CrossRefADSGoogle Scholar
  4. 4.
    A. Bingham, Y. Zhao, D. Grischkowsky, Appl. Phys. Lett. 87, 051101 (2005) CrossRefADSGoogle Scholar
  5. 5.
    E.W. Becker, W. Ehrfeld, D. Münchmeyer, H. Betz, A. Heuberger, S. Pongratz, W. Glashauser, H.J. Michel, R.V. Siemens, Naturwissenschaften 69, 520 (1982) CrossRefADSGoogle Scholar
  6. 6.
    W. Chao, J. Kim, S. Rekawa, P. Fischer, E.H. Anderson, Opt. Express 17, 17669 (2009) CrossRefADSGoogle Scholar
  7. 7.
    A.D. Wilson, IBM J. Res. Dev. 37, 299 (1993) CrossRefGoogle Scholar
  8. 8.
    D.P. Sanders, Chem. Rev. 110, 321 (2010) CrossRefGoogle Scholar
  9. 9.
    C.W. Gwyn, R. Stulen, D. Sweeney, D. Attwood, J. Vac. Sci. Technol. B 16, 3142 (1998) CrossRefGoogle Scholar
  10. 10.
    G. Möllenstedt, R. Speidel, Phys. Bl. 16, 192 (1960) Google Scholar
  11. 11.
    L. Li, R.R. Gattass, E. Gershgoren, H. Hwang, J.T. Fourkas, Science 324, 910 (2009) CrossRefADSGoogle Scholar
  12. 12.
    V.V. Aristov, in X-ray Microscopy II, ed. by D. Sayre, M. Howells, J. Kirz, H. Rarback (Springer, Berlin, 1988) Google Scholar
  13. 13.
    R.L. Seliger, R.L. Kubena, R.D. Olney, J.W. Ward, V. Wang, J. Vac. Sci. Technol. 16, 1610 (1979) CrossRefADSGoogle Scholar
  14. 14.
    A.E. Brennemann, A.V. Brown, M. Hatzakis, A.J. Speth, R.F.M. Thornley, IBM J. Res. Dev. 11, 520 (1967) CrossRefGoogle Scholar
  15. 15.
    G. Schmahl, D. Rudolph, Optik 29, 577 (1969) ADSGoogle Scholar
  16. 16.
    B. Niemann, D. Rudolph, G. Schmahl, Appl. Opt. 15, 1883 (1976) CrossRefADSGoogle Scholar
  17. 17.
    A.L.D. Kilcoyne, T. Tyliszczak, W.F. Steele, S. Fakra, P. Hitchcock, K. Franck, E. Anderson, B. Harteneck, E.G. Rightor, G.E. Mitchell, A.P. Hitchcock, L. Yang, T. Warwick, H. Ade, J. Synchrotron Radiat. 10, 125 (2003) CrossRefGoogle Scholar
  18. 18.
    K.V. Kaznatcheev, Ch. Karunakaran, U.D. Lanke, S.G. Urquhart, M. Obst, A.P. Hitchcock, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 582, 96 (2007) CrossRefADSGoogle Scholar
  19. 19.
    J. Raabe, G. Tzvetkov, U. Flechsig, M. Böge, A. Jaggi, B. Sarafimov, M.G.C. Vernooij, T. Huthwelker, H. Ade, D. Kilcoyne, T. Tyliszczak, R.H. Fink, C. Quitmann, Rev. Sci. Instrum. 79, 113704 (2008) CrossRefADSGoogle Scholar
  20. 20.
    D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation Principles and Applications (Cambridge University Press, Cambridge, 1999) Google Scholar
  21. 21.
    W. Chao, private communication Google Scholar
  22. 22.
    X. Zhang, C. Jacobsen, S. Lindaas, S. Williams, J. Vac. Sci. Technol. B 13, 1477 (1995) CrossRefGoogle Scholar
  23. 23.
    R. Larciprete, L. Gregoratti, M. Danailov, R.M. Montereali, F. Bonfigli, M. Kiskinova, Appl. Phys. Lett. 80, 3862 (2002) CrossRefADSGoogle Scholar
  24. 24.
    J. Wang, H.D.H. Stöver, A.P. Hitchcock, T. Tyliszczak, J. Synchrotron Radiat. 14, 181 (2007) CrossRefGoogle Scholar
  25. 25.
    J. Wang, H.D.H. Stöver, A.P. Hitchcock, J. Phys. Chem. C 111, 16330 (2007) CrossRefGoogle Scholar
  26. 26.
    A.G. Caster, S. Kowarik, A.M. Schwartzberg, S.R. Leone, A. Tivanski, M.K. Gilles, J. Vac. Sci. Technol. B 28, 1304 (2010) CrossRefGoogle Scholar
  27. 27.
    T. Warwick, H. Ade, D. Kilcoyne, M. Kritscher, T. Tyliszczak, S. Fakra, A. Hitchcock, P. Hitchcock, H. Padmore, J. Synchrotron Radiat. 9, 254 (2002) CrossRefGoogle Scholar
  28. 28.
    R.W. Johnstone, I.G. Foulds, M.V. Pallapa, A.M. Parameswaran, J. Micro/Nanolithogr. MEMS MOEMS 7, 043006 (2008) CrossRefGoogle Scholar
  29. 29.
    A.C. Henry, R.L. McCarley, S. Das, C. Khan Malek, D.S. Poche, Microsyst. Technol. 4, 104 (1998) CrossRefGoogle Scholar
  30. 30.
    D.L. Spears, H.I. Smith, Electron. Lett. 8, 102 (1972) CrossRefGoogle Scholar
  31. 31.
    J.S. Greeneich, J. Electrochem. Soc. 122, 970 (1975) CrossRefGoogle Scholar
  32. 32.
    M. Hatzakis, J. Polym. Sci. 23, 73 (1974) Google Scholar
  33. 33.
    J. Wang, C. Morin, L. Li, A.P. Hitchcock, A. Scholl, A. Doran, J. Electron Spectrosc. Relat. Phenom. 170, 25 (2009) CrossRefGoogle Scholar
  34. 34.
    J.S. Greeneich, J. Electrochem. Soc. 121, 1669 (1974) CrossRefGoogle Scholar
  35. 35.
    R.E. Burge, M.T. Browne, P. Charalambous, Microelectron. Eng. 6, 227 (1987) CrossRefGoogle Scholar
  36. 36.
    R. Klauser, I.-H. Hong, S.-C. Wang, M. Zharnikov, A. Paul, A. Gölzhäuser, A. Terfort, T.J. Chuang, J. Phys. Chem. B 107, 13133 (2003) CrossRefGoogle Scholar
  37. 37.
    A.D. Dubner, A. Wagner, J.P. Levin, J. Mauer, J. Vac. Sci. Technol. B 10, 3212 (1992) CrossRefGoogle Scholar
  38. 38.
    G. Compagnini, G.G.N. Angilella, A. Raudino, O. Puglisi, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 175–177, 559 (2001) CrossRefGoogle Scholar
  39. 39.
    M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999) Google Scholar
  40. 40.
    M.D. Galus, E. Moon, H.I. Smith, R. Menon, J. Vac. Sci. Technol. B 24, 2960 (2006) CrossRefGoogle Scholar
  41. 41.
    A.N. Broers, IBM J. Res. Dev. 32, 502 (1988) CrossRefGoogle Scholar
  42. 42.
    A.N. Broers, A.C.F. Hoole, J.M. Ryan, Microelectron. Eng. 32, 131 (1996) CrossRefGoogle Scholar
  43. 43.
    M.P. Seah, W.A. Dench, Surf. Interface Anal. 1, 2 (1979) CrossRefGoogle Scholar
  44. 44.
    S. Yasin, D.G. Hasko, H. Ahmed, Appl. Phys. Lett. 78, 2760 (2001) CrossRefADSGoogle Scholar
  45. 45.
    W. Hu, K. Sarveswaran, M. Lieberman, G.H. Bernstein, J. Vac. Sci. Technol. B 22, 1711 (2004) CrossRefGoogle Scholar
  46. 46.
    E. Lavallée, J. Beauvais, J. Beerens, J. Vac. Sci. Technol. B 16, 1255 (1998) CrossRefGoogle Scholar
  47. 47.
    N. Arjmandi, L. Lagae, G. Borghs, J. Vac. Sci. Technol. B 27, 1915 (2009) CrossRefGoogle Scholar
  48. 48.
    G. Schmahl, D. Rudolph, D. Neimann, in Proc. Eight Int. Conf. on X-ray Optics and Microanalysis, Boston (1977), p. 60A Google Scholar
  49. 49.
    S. Heim Rehbein, P. Guttmann, S. Werner, G. Schneider, Phys. Rev. Lett. 103, 110801 (2009) CrossRefADSGoogle Scholar
  50. 50.
    H. Mimura, S. Matsuyama, H. Yumoto, Jpn. J. Appl. Phys. 44, L539 (2005) CrossRefADSGoogle Scholar
  51. 51.
    C.R.K. Marrian, E.A. Dobisz, J.A. Dagata, J. Vac. Sci. Technol. B 10, 2877 (1992) CrossRefGoogle Scholar
  52. 52.
    P.A. Peterson, Z.J. Radzimski, S.A. Schwalm, P.E. Russell, J. Vac. Sci. Technol. B 10, 3088 (1992) CrossRefGoogle Scholar
  53. 53.
    W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson, D.T. Attwood, Nature 435, 1210 (2005) CrossRefADSGoogle Scholar
  54. 54.
    A.P. Hitchcock, J.J. Dynes, G. Johansson, J. Wang, G. Botton, Micron 39, 741 (2008) CrossRefGoogle Scholar
  55. 55.
    H.I. Smith, J. Vac. Sci. Technol. B 14, 4318 (1996) CrossRefGoogle Scholar
  56. 56.
    A. Pépin, D. Decanini, Y. Chen, J. Vac. Sci. Technol. B 18, 2981 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations