Applied Physics A

, Volume 104, Issue 1, pp 395–400 | Cite as

Absence of morphotropic phase boundary effects in BiFeO3–PbTiO3 thin films grown via a chemical multilayer deposition method

  • Shashaank Gupta
  • Shuvrajyoti Bhattacharjee
  • Dhananjai Pandey
  • Vipul Bansal
  • Suresh K. Bhargava
  • Ju Lin Peng
  • Ashish Garg


We report an unusual behavior observed in (BiFeO3)1−x –(PbTiO3) x (BF–xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF–xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP-xPT system dramatically.


Morphotropic Phase Bind Monoclinic Structure Remanent Polarization Ferroelectric Polarization Spin Spiral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299(5613), 1719 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    S.A. Fedulov, P.B. Ladyzhinskii, I.L. Pyatigorskaya, Y.N. Venevtsev, Sov. Phys. Solid State 6(2), 375 (1964) Google Scholar
  3. 3.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, T. Bhimasankaram, Phys. Status Solidi, A Appl. Res. 165(1), 317 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    S. Bhattacharjee, V. Pandey, R.K. Kotnala, D. Pandey, Appl. Phys. Lett. 94(1), 012906 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    W.-M. Zhu, H.-Y. Guo, Z.-G. Ye, Phys. Rev. B 78, 014401 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107(12), 124112 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    S. Bhattacharjee, S. Tripathi, D. Pandey, Appl. Phys. Lett. 91(4), 042903 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    W. Kaczmarek, Z. Pajak, M. Polomska, Solid State Commun. 17(7), 4 (1975) Google Scholar
  9. 9.
    V. Sunder, A. Halliyal, A.M. Umarji, J. Mater. Res. 10(5), 1301 (1995) ADSCrossRefGoogle Scholar
  10. 10.
    W. Sakamoto, H. Yamazaki, A. Iwata, T. Shimura, T. Yogo, Jpn. J. Appl. Phys. 45(9B), 7315 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Khan, T.P. Comyn, A.J. Bell, Appl. Phys. Lett. 91(3), 032901 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    S. Gupta, A. Garg, D.C. Agrawal, S. Bhattacharjee, D. Pandey, J. Appl. Phys. 105(1), 014101 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    D. Vanderbilt, M.H. Cohen, Phys. Rev. B 63(9), 094108 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    G. Catalan, A. Janssens, G. Rispens, S. Csiszar, O. Seeck, G. Rijnders, D.H.A. Blank, B. Noheda, Phys. Rev. Lett. 96(12), 127602 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    G. Xu, J. Li, D. Viehland, Appl. Phys. Lett. 89(22), 222901 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    L. Bi, A.R. Taussig, H.-S. Kim, L. Wang, G.F. Dionne, D. Bono, K. Persson, G. Ceder, C.A. Ross, Phys. Rev. B 78(10), 104106 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    R.A.M. Gotardo, I.A. Santos, L.F. Cótica, É.R. Botero, D. Garcia, J.A. Eiras, Scr. Mater. 61(5), 508 (2009) CrossRefGoogle Scholar
  18. 18.
    D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, S. Fusil, Phys. Rev. B 76(2), 024116 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    W. Eerenstein, F.D. Morrison, J. Dho, M.G. Blamire, J.F. Scott, N.D. Mathur, Science 307, 1203a (2005) CrossRefGoogle Scholar
  20. 20.
    A.M. Kadomtseva, A.K. Zvezdin, Y.F. Popov, A.P. Pyatakov, G.P. Vorob’ev, JETP Lett. 79(11), 571 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    Z.V. Gabbasova, M.D. Kuzmin, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, I.B. Krynetsky, Phys. Lett. A 158(9), 491 (1991) ADSCrossRefGoogle Scholar
  22. 22.
    T. Schedel-Niedrig, W. Weiss, R. Schlögl, Phys. Rev. B 52(24), 17449 (1995) ADSCrossRefGoogle Scholar
  23. 23.
    H. Bea, M. Bibes, A. Barthelemy, K. Bouzehouane, E. Jacquet, A. Khodan, J.P. Contour, S. Fusil, F. Wyczisk, A. Forget, D. Lebeugle, D. Colson, M. Viret, Appl. Phys. Lett. 87(7), 072508 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    M.P. Morales, S. Veintemillas-Verdaguer, M.I. Montero, C.J. Serna, A. Roig, L. Casas, B. Martinez, F. Sandiumenge, Chem. Mater. 11(11), 3058 (1999) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shashaank Gupta
    • 1
  • Shuvrajyoti Bhattacharjee
    • 2
  • Dhananjai Pandey
    • 2
  • Vipul Bansal
    • 3
  • Suresh K. Bhargava
    • 3
  • Ju Lin Peng
    • 3
  • Ashish Garg
    • 1
  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.School of Materials Science and Technology, Institute of TechnologyBanaras Hindu UniversityVaranasiIndia
  3. 3.School of Applied SciencesRMIT UniversityMelbourneAustralia

Personalised recommendations