Applied Physics A

, Volume 104, Issue 1, pp 319–323 | Cite as

Effects of strain-compensated AlGaN/InGaN superlattice barriers on the optical properties of InGaN light-emitting diodes

Article

Abstract

In this article, metalorganic chemical vapor deposition (MOCVD)-grown InGaN multiple-quantum-well (MQW) light-emitting diodes (LEDs) with Al0.03Ga0.97N and Al0.03Ga0.97N/In0.01Ga0.99N superlattices-barrier layers on c-plane sapphire were studied for the influence of the strain-compensated barrier on the optical properties of the LEDs. High-resolution X-ray diffraction (HRXRD) analysis shows that the LEDs with a strain-compensated superlattice barrier (SC-SLB) have better interface quality than those using AlGaN. This difference in quality may result from the alleviation of strain relaxation in superlattice layers to improve the crystalline perfection of the epitaxial structures. It was also found that the degree of the exciton localization effect rises considerably as InGaN grows directly on the AlGaN barrier layers. However, the increase in the strength of the polarization fields within the MQWs (as evaluated from bias-dependent photoluminescence (PL) measurement) could reduce the radiative efficiency of the LEDs and shift their PL peaks toward long wavelengths. With suitable control of crystalline quality and the reduced quantum-confined Stark effect in the MQWs, the SC-SLB LEDs operating at 150-mA-current show a 22.3% increase in light output power as compared to their conventional counterparts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Taguchi, Proc. SPIE 7422, 74220B (2009) ADSCrossRefGoogle Scholar
  2. 2.
    H.K. Cho, J.Y. Lee, J.H. Song, P.W. Yu, G.M. Yang, C.S. Kim, J. Appl. Phys. 91, 1104 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    Z.L. Fang, D.Q. Lin, J.Y. Kang, J.F. Kong, W.Z. Shen, Nanotechnology 20, 235401 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    H. Morkoç, Handbook of Nitride Semiconductors and Devices, vol. 1 (Wiley-VCH, Berlin, 2008), Chap. 2 CrossRefGoogle Scholar
  5. 5.
    C.F. Huang, T.Y. Tang, J.J. Huang, W.Y. Shiao, C.C. Yang, C.W. Hsu, L.C. Chen, Appl. Phys. Lett. 89, 051913 (2006) ADSCrossRefGoogle Scholar
  6. 6.
    C.B. Soh, S.Y. Chow, L.Y. Tan, H. Hartono, W. Liu, S.J. Chua, Appl. Phys. Lett. 93, 173107 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    H. Zhao, R.A. Arif, Y.K. Ee, N. Tansu, IEEE J. Quantum Electron. 45, 66 (2009) CrossRefGoogle Scholar
  8. 8.
    C.T. Wan, Y.K. Su, H.C. Yu, C.Y. Huang, W.H. Lin, W.C. Chen, H.C. Tseng, J.B. Horng, C. Hu, S. Tsau, IEEE Photonics Technol. Lett. 21, 1474 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    R. Czernecki, S. Krukowski, G. Targowski, P. Prystawko, M. Sarzynski, M. Krysko, G. Kamler, I. Grzegory, M. Leszczynski, S. Porowski, Appl. Phys. Lett. 91, 231914 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    G. Pozina, J.P. Bergman, B. Monemar, T. Takeuchi, H. Amano, I. Akasaki, J. Appl. Phys. 88, 2677 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    T.S. Ko, T.C. Lu, T.C. Wang, J.R. Chen, R.C. Gao, M.H. Lo, H.C. Kuo, S.C. Wang, J.L. Shen, J. Appl. Phys. 104, 093106 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    M.E. Aumer, S.F. LeBoeuf, B.F. Moody, S.M. Bedair, K. Nam, J.Y. Lin, H.X. Jiang, Appl. Phys. Lett. 80, 3099 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    J.H. Chen, Z.C. Feng, H.L. Tsai, J.R. Yang, P. Li, C. Wetzel, T. Detchprohm, J. Nelson, Thin Solid Films 498, 123 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    T. Wang, J. Bai, S. Sakai, J.K. Ho, Appl. Phys. Lett. 78, 2617 (2001) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Electronic Engineering and Green Technology Research CenterChang Gung UniversityTao-YuanTaiwan, ROC

Personalised recommendations