Applied Physics A

, Volume 103, Issue 2, pp 301–307 | Cite as

Structure and magnetic properties of annealed metastable FeAg/Pt films

  • Y. S. Yu
  • Haibo Li
  • W. L. Li
  • Mei Liu
  • L. P. Yue
  • W. D. Fei
  • D. J. Sellmyer
Article

Abstract

FeAg and FeAg/Pt films were prepared by dc magnetron sputtering at room temperature. The effects of Ag volume fraction in FeAg films and postannealing temperature and time on structure and magnetic properties of FeAg and FeAg/Pt films have been investigated. The results show that the as-deposited FeAg films are metastable. After annealing at 300°C, the phase separation of metastable FeAg films happened and the highest coercivity is obtained in Fe50Ag50/Pt film. With increasing annealing temperature, the ordering and the magnetic properties of the Fe50Ag50/Pt films were improved. When the Fe50Ag50/Pt films are annealed at 600°C for different annealing times, a long annealing time enhances the ordering of the metastable Fe50Ag50/Pt films and affects the orientation development. When the films are annealed for a long time, the grain size and the magnetic domain size also increase, which lead to an increase of correlation length due to the growth of FePt grains.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Weller, T. McDaniel, in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski (Springer, Berlin, 2006), p. 295 CrossRefGoogle Scholar
  2. 2.
    K. Kang, Z.G. Zhang, C. Papusoi, T. Suzuki, Appl. Phys. Lett. 82, 3284 (2003) CrossRefADSGoogle Scholar
  3. 3.
    Y. Zhu, J.W. Cai, Appl. Phys. Lett. 87, 032504 (2005) CrossRefADSGoogle Scholar
  4. 4.
    C. Feng, B.H. Li, G. Han, J. Teng, Y. Jiang, Q.L. Liu, G.H. Yu, Appl. Phys. Lett. 88, 232109 (2006) CrossRefADSGoogle Scholar
  5. 5.
    J.W. Cao, J. Cai, Y. Liu, Z. Yang, F.L. Wei, A.L. Xia, B.S. Han, J.M. Bai, J. Appl. Phys. 99, 08F901 (2006) CrossRefGoogle Scholar
  6. 6.
    Y.S. Yu, H.B. Li, L.W. Li, M. Liu, W.D. Fei, J. Magn. Magn. Mater. 320, L125 (2008) CrossRefADSGoogle Scholar
  7. 7.
    Z.L. Zhao, J. Ding, K. Inaba, J.S. Chen, J.P. Wang, Appl. Phys. Lett. 83, 2196 (2003) CrossRefADSGoogle Scholar
  8. 8.
    T. Maeda, T. Kai, A. Kikitsu, T. Nagase, J.I. Akiyama, Appl. Phys. Lett. 80, 2147 (2002) CrossRefADSGoogle Scholar
  9. 9.
    Y.K. Takahashi, M. Ohnuma, K. Hono, J. Magn. Magn. Mater. 246, 259 (2002) CrossRefADSGoogle Scholar
  10. 10.
    S.C. Chou, C.C. Yu, Y. Liou, Y.D. Yao, D.H. Wei, T.S. Chin, M.F. Tai, J. Appl. Phys. 95, 7276 (2004) CrossRefADSGoogle Scholar
  11. 11.
    J.J. Lin, Z.Y. Pan, S. Karamat, S. Mahmood, P. Lee, T.L. Tan, S.V. Springham, R.S. Rawat, J. Phys., D. Appl. Phys. 41, 095001 (2008) CrossRefADSGoogle Scholar
  12. 12.
    C.H. Lai, C.H. Yang, C.C. Chiang, Appl. Phys. Lett. 83, 4550 (2003) CrossRefADSGoogle Scholar
  13. 13.
    D. Ravelosona, C. Chappert, V. Mathet, H. Bernas, Appl. Phys. Lett. 76, 236 (2000) CrossRefADSGoogle Scholar
  14. 14.
    J.S. Chen, B.C. Lim, J.F. Hu, Y.F. Ding, G.M. Chow, G. Ju, J. Phys., D. Appl. Phys. 41, 205001 (2008) CrossRefADSGoogle Scholar
  15. 15.
    J.S. Chen, B.C. Lim, J.F. Hu, Y.K. Lim, B. Liu, G.M. Chow, Appl. Phys. Lett. 90, 042508 (2007) CrossRefADSGoogle Scholar
  16. 16.
    T. Shima, T. Moriguchi, T. Seki, S. Mitani, K. Takanashi, J. Appl. Phys. 93, 7238 (2003) CrossRefADSGoogle Scholar
  17. 17.
    C.H. Lai, C.H. Yang, C.C. Chiang, T. Balaji, T.K. Tseng, Appl. Phys. Lett. 85, 4430 (2004) CrossRefADSGoogle Scholar
  18. 18.
    S. Kang, J.W. Harrell, D.E. Nikles, Nano Lett. 2, 1033 (2002) CrossRefADSGoogle Scholar
  19. 19.
    C.L. Platt, K.W. Wierman, E.B. Svedberg, R. van de Veerdonk, J.K. Howard, A.G. Roy, D.E. Laughlin, J. Appl. Phys. 92, 6104 (2002) CrossRefADSGoogle Scholar
  20. 20.
    Y.N. Hsu, S. Jeong, D.E. Laughlin, J. Appl. Phys. 89, 7068 (2001) CrossRefADSGoogle Scholar
  21. 21.
    K. Kang, Z.G. Zhang, C. Papusoi, T. Suzuki, Appl. Phys. Lett. 82, 3284 (2003) CrossRefADSGoogle Scholar
  22. 22.
    Z.L. Zhao, J. Ding, J.S. Chen, J.P. Wang, Appl. Phys. Lett. 83, 2196 (2003) CrossRefADSGoogle Scholar
  23. 23.
    J. Wan, Y. Huang, Y. Zhang, M.J. Bonder, G.C. Hadjipanayis, D. Weller, J. Appl. Phys. 97, 10J121 (2005) CrossRefGoogle Scholar
  24. 24.
    B.H. Li, C. Feng, T. Yang, P. Hwang, J. Teng, G.H. Yu, F.W. Zhu, J. Appl. Phys. 99, 016102 (2006) CrossRefADSGoogle Scholar
  25. 25.
    C.T. Yu, Y. Yang, Y.Q. Zhou, S.X. Li, W.Y. Lai, Z.X. Wang, J. Appl. Phys. 76, 6487 (1994) CrossRefADSGoogle Scholar
  26. 26.
    B.W. Robart, Acta Metall. 2, 597 (1954) CrossRefGoogle Scholar
  27. 27.
    J.S. Chen, J.F. Hu, B.C. Lim, Y.K. Lim, B. Liu, G.M. Chow, G. Ju, J. Appl. Phys. 103, 07F517 (2008) CrossRefGoogle Scholar
  28. 28.
    H. Zeng, M.L. Yan, N. Powers, D.J. Sellmyer, Appl. Phys. Lett. 80, 2350 (2002) CrossRefADSGoogle Scholar
  29. 29.
    Y.K. Takahashi, T.O. Seki, K. Hono, T. Shima, K. Takanashi, J. Appl. Phys. 96, 475 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Y. S. Yu
    • 1
    • 2
    • 3
  • Haibo Li
    • 4
  • W. L. Li
    • 1
  • Mei Liu
    • 4
  • L. P. Yue
    • 3
  • W. D. Fei
    • 1
  • D. J. Sellmyer
    • 3
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.School of Materials Science and EngineeringJilin UniversityChangchunChina
  3. 3.Department of Physics and Astronomy and Nebraska Center for Materials and NanoscienceUniversity of NebraskaLincolnUSA
  4. 4.College of PhysicsJilin Normal UniversitySipingChina

Personalised recommendations