Advertisement

Applied Physics A

, Volume 102, Issue 1, pp 35–38 | Cite as

Inscription of high contrast volume Bragg gratings in fused silica with femtosecond laser pulses

  • Christian VoigtländerEmail author
  • Daniel Richter
  • Jens Thomas
  • Andreas Tünnermann
  • Stefan Nolte
Rapid communication

Abstract

We present volume Bragg gratings (VBGs) with a period of 1.075 μm inscribed in fused silica using a femtosecond laser and a phase mask. The femtosecond-inscribed VBGs can be used as reflecting elements with reflectivities of about 80% for a 1-mm-long grating. Due to the non-sinusoidal refractive-index shape, higher order Bragg resonances up to the 7th reflection order could be measured. Therefore, the Bragg gratings also reflect light in the visible-wavelength range.

Keywords

Fuse Silica Probe Beam Femtosecond Laser Pulse Diffraction Grating Phase Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.V. Ciapurin, L.B. Glebov, V.I. Smirnov, in Fiber Lasers: Technology, Systems, and Applications, ed. by L.N. Durvasula. Proc. SPIE, vol. 5335 (SPIE Press, Bellingham, 2004), pp. 116–124 Google Scholar
  2. 2.
    J.J. Amodei, D.L. Staebler, Appl. Phys. Lett. 18, 540 (1971) CrossRefADSGoogle Scholar
  3. 3.
    O.M. Efimov, L.B. Glebov, L.N. Glebova, K.C. Richardson, V.I. Smirnov, Appl. Opt. 38, 619 (1999) CrossRefADSGoogle Scholar
  4. 4.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996) CrossRefADSGoogle Scholar
  5. 5.
    T. Toma, Y. Furuya, W. Watanabe, K. Itoh, J. Nishii, K. Hayashi, Opt. Rev. 7, 14 (2000) CrossRefGoogle Scholar
  6. 6.
    K. Yamada, W. Watanabe, K. Kintaka, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 42, 6916 (2003) CrossRefADSGoogle Scholar
  7. 7.
    Y. Li, W. Watanabe, K. Yamada, T. Shinagawa, K. Itoh, J. Nishii, Y. Jiang, Appl. Phys. Lett. 80, 1508 (2002) CrossRefADSGoogle Scholar
  8. 8.
    S.J. Mihailov, C.W. Smelser, P. Lu, R.B. Walker, D. Grobnic, H. Ding, G. Henderson, Opt. Lett. 12, 995 (2003) CrossRefADSGoogle Scholar
  9. 9.
    C.W. Smelser, D. Grobnic, S.J. Mihailov, Opt. Lett. 29, 1730 (2004) CrossRefADSGoogle Scholar
  10. 10.
    J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, A. Tünnermann, Appl. Phys. A 86, 153 (2007) CrossRefADSGoogle Scholar
  11. 11.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991) CrossRefGoogle Scholar
  12. 12.
    K. Hirao, K. Miura, J. Non-Cryst. Solids 239, 91 (1998) CrossRefADSGoogle Scholar
  13. 13.
    W.X. Xie, M. Douay, P. Bernage, P. Niay, J.F. Bayon, T. Georges, Opt. Commun. 101, 85 (1993) CrossRefADSGoogle Scholar
  14. 14.
    C.W. Smelser, S.J. Mihailov, D. Grobnic, Opt. Lett. 32, 1453 (2007) CrossRefADSGoogle Scholar
  15. 15.
    H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969) Google Scholar
  16. 16.
    S.F. Su, T.K. Gaylord, J. Opt. Soc. Am. 65, 59 (1975) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christian Voigtländer
    • 1
    Email author
  • Daniel Richter
    • 1
  • Jens Thomas
    • 1
  • Andreas Tünnermann
    • 1
    • 2
  • Stefan Nolte
    • 1
    • 2
  1. 1.Institute of Applied PhysicsFriedrich-Schiller-University JenaJenaGermany
  2. 2.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations