Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optimized sub-wavelength grating mirror design for mid-infrared wavelength range

Abstract

Several designs of sub-wavelength grating mirrors adapted to mid-infrared operation are reported with several percents of tolerance for the grating fabrication. These designs have been automatically optimized by the use of a genetic-based algorithm to maximize a quality factor defined to meet the requirements of a VCSEL cavity mirror. These mirrors are devoted to integration in VCSEL operating near λ=2.3 μm, with a large bandwidth, very high reflectivity coefficient for transverse magnetic mode only, polarization selectivity and a thickness as low as 2 μm.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Hangauer, J. Chen, R. Strzoda, M. Ortsiefer, M.-C. Amann, Wavelength modulation spectroscopy with a widely tunable InP-based 2.3 μm vertical-cavity surface-emitting laser. Opt. Lett. 33(14), 1566–1568 (2008)

  2. 2.

    J. Chen, A. Hangauer, R. Strzoda, M.C. Amann, VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell. Appl. Phys. B (2010). 10.1007/s00340-010-4011-0

  3. 3.

    A. Perona, A. Garnache, L. Cerutti, A. Ducanchez, S. Mihindou, P. Grech, G. Boissier, F. Genty, AlAsSb/GaSb doped distributed Bragg reflectors for electrically pumped VCSELs emitting around 2.3 μm. Semicond. Sci. Technol. 22(10), 1140–1144 (2007)

  4. 4.

    A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, D. Romanini, Single-frequency tunable sb-based VCSELs emitting at 2.3 μm. IEEE Photon. Technol. Lett. 17(10), 2020–2022 (2005)

  5. 5.

    L. Cerutti, A. Ducanchez, G. Narcy, P. Grech, G. Boissier, A. Garnache, E. Tournié, F. Genty, GaSb-based VCSELs emitting in the mid-infrared wavelength range (2–3 μm) grown by MBE. J. Cryst. Growth 311(7), 1912–1916 (2009)

  6. 6.

    L. Cerutti, A. Ducanchez, P. Grech, A. Garnache, F. Genty, Room-temperature, monolithic, electrically-pumped type-l quantum-well Sb-based VCSELs emitting at 2.3 μm. Electron. Lett. 44(3), 203–205 (2008)

  7. 7.

    A. Ducanchez, L. Cerutti, P. Grech, F. Genty, E. Tournié, Mid-infrared GaSb-based EP-VCSEL emitting at 2.63 μm. Electron. Lett. 45(5), 265–267 (2009)

  8. 8.

    A. Bachmann, S. Arafin, K. Kashani-Shirazi, Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm. New J. Phys. 11(12), 125014 (2009)

  9. 9.

    M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1(2), 119–122 (2007)

  10. 10.

    I. Chung-Sung, J. Mork, P. Gilet, A. Chelnokov, Subwavelength grating-mirror VCSEL with a thin oxide gap. IEEE Photon. Technol. Lett. 20, 105–107 (2008)

  11. 11.

    C.F.R. Mateus, M.C.Y. Huang, Y. Deng, A.R. Neureuther, C.J. Chang-Hasnain, Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photon. Technol. Lett. 16(2), 518–520 (2004)

  12. 12.

    F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.B. Kley, A. Tünnermann, R. Schnabel, Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal. Phys. Rev. Lett. 104(16), 163903 (2010)

  13. 13.

    R. Magnusson, M. Shokooh-Saremi, Physical basis for wideband resonant reflectors. Opt. Express 16(5), 3456–3462 (2008)

  14. 14.

    M.G. Moharam, Drew A. Pommet, Eric B. Grann, T.K. Gaylord, Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. J. Opt. Soc. Am. A 12(5), 1077–1086 (1995)

  15. 15.

    K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

  16. 16.

    D. Goodman, Galileo 1.0b. http://sourceforge.net/projects/galileo/, February 2003

  17. 17.

    D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley Longman, Boston, 1989)

  18. 18.

    W.A. Stein, Sage mathematics software (version 4.3). http://www.sagemath.org/, February 2010. The Sage Group

  19. 19.

    H. Rathgen, Mrcwa 20080820. http://mrcwa.sourceforge.net/, February 2010

  20. 20.

    J. Wang, Y. Jin, J. Shao, Z. Fan, Optimization design of an ultrabroadband, high-efficiency, all-dielectric grating. Opt. Lett. 35(2), 187–189 (2010)

  21. 21.

    D.L. Kroshko, OpenOpt 0.27. http://openopt.org/, December 2009

Download references

Author information

Correspondence to C. Chevallier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chevallier, C., Fressengeas, N., Genty, F. et al. Optimized sub-wavelength grating mirror design for mid-infrared wavelength range. Appl. Phys. A 103, 1139–1144 (2011). https://doi.org/10.1007/s00339-010-6059-4

Download citation

Keywords

  • GaSb
  • Large Bandwidth
  • Transverse Magnetic Mode
  • Sublayer Thickness
  • Grating Thickness