Applied Physics A

, Volume 102, Issue 1, pp 21–26 | Cite as

Laser forward transfer based on a spatial light modulator

  • R. C. Y. Auyeung
  • H. Kim
  • N. A. Charipar
  • A. J. Birnbaum
  • S. A. Mathews
  • A. Piqué
Invited Paper

Abstract

We report the first demonstration of laser forward transfer using a real-time reconfigurable mask based on a spatial light modulator. The ability to dynamically change the projected beam shape and size of a coherent light source, in this case a 355-nm pulsed UV laser, represents a significant technological advancement in laser direct-write processing. The application of laser transfer techniques with adaptive control of the laser beam pattern is unique and represents a paradigm shift in non-lithographic processing. This work describes how the size and shape of an incident laser beam can be dynamically controlled in real time with the use of a digital micromirror device (DMD), resulting in laser-printed functional nanomaterials with geometries identical to those of the projected beam. For applications requiring additive non-lithographic techniques, this novel combination, which relies on the laser forward transfer of variable, structured voxels, represents a dramatic improvement in the capabilities and throughput of laser direct-write processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Piqué, D.B. Chrisey, Direct-write Technologies for Rapid Prototyping Applications: Sensors, Electronics and Integrated Power Sources (Academic Press, San Diego, 2002) Google Scholar
  2. 2.
    K.K.B. Hon, L. Li, I.M. Hutchings, CIRP Ann. Manuf. Technol. 57(2), 601 (2008) CrossRefGoogle Scholar
  3. 3.
    C. Sun, N. Fang, D.M. Wu, X. Zhang, Sens. Actuators, A, Phys. 121(1), 113 (2005) CrossRefGoogle Scholar
  4. 4.
    D. Dudley, W. Duncan, J. Slaughter, Proc. SPIE 4985, 14 (2003) CrossRefGoogle Scholar
  5. 5.
    Y. Lu, S. Chen, Appl. Phys. Lett. 92(4), 041109 (2008) CrossRefADSGoogle Scholar
  6. 6.
    M.V. Kessels, C. Nassour, P. Grosso, K. Heggarty, Opt. Commun. 283, 3089 (2010) CrossRefADSGoogle Scholar
  7. 7.
    K.-R. Kim, J. Yi, S.-H. Cho, N.-H. Kang, M.-W. Cho, B.-S. Shin, B. Choi, Appl. Surf. Sci. 255(18), 7835 (2009) CrossRefADSGoogle Scholar
  8. 8.
    A. Piqué, R.C.Y. Auyeung, H. Kim, K.M. Metkus, S.A. Mathews, J. Laser Micro/Nanoeng. 3, 163 (2008) CrossRefGoogle Scholar
  9. 9.
    R.C.Y. Auyeung, H. Kim, A.J. Birnbaum, M. Zalalutdinov, S.A. Mathews, A. Piqué, Appl. Phys. A 97, 513 (2009) CrossRefADSGoogle Scholar
  10. 10.
    C.B. Arnold, P. Serra, A. Piqué, Mater. Res. Soc. Bull. 32, 23 (2007) CrossRefGoogle Scholar
  11. 11.
    J. Wang, R.C.Y. Auyeung, H. Kim, N.A. Charipar, A. Piqué, Adv. Mater. (2010). doi: 10.1002/adma201001729
  12. 12.
    S.K. Nayar, V. Branzoi, T.E. Boult, in Proc. 2004 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR’04), 2004, vol. 1, p. 436 Google Scholar

Copyright information

© Springer-Verlag (outside the USA) 2010

Authors and Affiliations

  • R. C. Y. Auyeung
    • 1
  • H. Kim
    • 1
  • N. A. Charipar
    • 1
  • A. J. Birnbaum
    • 1
  • S. A. Mathews
    • 1
  • A. Piqué
    • 1
  1. 1.Naval Research LaboratoryWashingtonUSA

Personalised recommendations