Advertisement

Applied Physics A

, Volume 102, Issue 1, pp 1–11 | Cite as

Identifying firing mammalian neurons in networks with high-resolution multi-transistor array (MTA)

  • A. Lambacher
  • V. Vitzthum
  • R. Zeitler
  • M. Eickenscheidt
  • B. Eversmann
  • R. Thewes
  • P. FromherzEmail author
Open Access
Invited paper

Abstract

The electrical activity of a network of mammalian neurons is mapped with a Multi-Transistor Array (MTA) fabricated with extended CMOS technology. The spatial resolution is 7.4 μm on an area of 1 mm2 at a sampling frequency of 6 kHz for a complete readout of 16,384 sensor transistors. Action potentials give rise to extracellular voltages with amplitudes in a range of 500 μV. On the basis of the high resolution in space and time, correlation algorithms are used to identify single action potentials with amplitudes as low as about 200μV, and to assign the signals to the activity of individual neurons even in a dense network.

Keywords

Mammalian Neuron Single Action Potential Action Potential Recording Sensor Site CMOS Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.A. Thomas et al., Exp. Cell. Res. 74, 61 (1972) CrossRefGoogle Scholar
  2. 2.
    G.W. Gross, E. Riedke, W. Kreutzberg, A. Meyer, Neurosci. Lett. 6, 101 (1977) CrossRefGoogle Scholar
  3. 3.
    J. Novak, B. Wheeler, J. Neurosci. Methods 23, 149 (1988) CrossRefGoogle Scholar
  4. 4.
    W.G. Regehr et al., J. Neurosci. Methods 30, 91 (1989) CrossRefADSGoogle Scholar
  5. 5.
    W.L.C. Rutten, J. van Wier, J.H.M. Put, IEEE Trans. Bio. Med. Eng. 38, 192 (1991) CrossRefGoogle Scholar
  6. 6.
    U. Egert et al., Brain Res. Protoc. 2, 229 (1998) CrossRefGoogle Scholar
  7. 7.
    Y. Jimbo, H.P.C. Robinson, Bioelectrochemistry 51, 107 (2000) CrossRefGoogle Scholar
  8. 8.
    P. Fromherz, A. Offenhausser, T. Vetter, J. Weis, Science 252, 1290 (1991) CrossRefADSGoogle Scholar
  9. 9.
    P. Fromherz, C.O. Mueller, R. Weis, Phys. Rev. Lett. 71, 4079 (1993) CrossRefADSGoogle Scholar
  10. 10.
    R. Schatzthauer, P. Fromherz, Eur. J. Neurosci. 10, 1956 (1998) CrossRefGoogle Scholar
  11. 11.
    S. Vassanelli, P. Fromherz, Appl. Phys. A 66, 459 (1998) CrossRefADSGoogle Scholar
  12. 12.
    M. Voelker, P. Fromherz, Small 1, 206 (2005) CrossRefGoogle Scholar
  13. 13.
    M. Hutzler, P. Fromherz, Eur. J. Neurosci. 19, 2231 (2004) CrossRefGoogle Scholar
  14. 14.
    F. Wallrapp, P. Fromherz, J. Appl. Phys. 99, 114103 (2006) CrossRefADSGoogle Scholar
  15. 15.
    B. Eversmann et al., IEEE J. Solid State Circuits 38, 2306 (2003) CrossRefGoogle Scholar
  16. 16.
    A. Lambacher et al., Appl. Phys. A 79, 1607 (2004) CrossRefADSGoogle Scholar
  17. 17.
    M. Hutzler et al., J. Neurophysiol. 96, 1638 (2006) CrossRefGoogle Scholar
  18. 18.
    F. Heer et al., IEEE J. Solid State Circuits 41, 1620 (2006) CrossRefGoogle Scholar
  19. 19.
    U. Frey et al., Proceedings 2007 ISSCC, Session 8, p. 12 (2007) Google Scholar
  20. 20.
    K. Imfeld et al., IEEE Trans. Biomed. Bioeng. 55, 2064 (2008) CrossRefGoogle Scholar
  21. 21.
    P. Fromherz, in Bioelectronics, ed. by I. Willner, E. Katz (Wiley, Weinheim, 2005), p. 339 Google Scholar
  22. 22.
    P. Fromherz, Eur. Biophys. J. 28, 254 (1999) CrossRefGoogle Scholar
  23. 23.
    M. Voelker, P. Fromherz, Phys. Rev. Lett. 96, 228102 (2006) CrossRefADSGoogle Scholar
  24. 24.
    K. Goslin, H. Asmussen, G. Banker, in Culturing Nerve Cells, ed. by G. Banker, K. Goslin (MIT Press, Cambridge, 1998), p. 339 Google Scholar
  25. 25.
    S. Rothman, W.M. Cowan, J. Comp. Neurol. 195, 141 (1981) CrossRefGoogle Scholar
  26. 26.
    M. Meister, J. Pine, D.A. Baylor, J. Neurosci. Methods 51, 95 (1994) CrossRefGoogle Scholar
  27. 27.
    A.M. Litten et al., IEEE Trans. Nucl. Sci. 51, 1434 (2004) CrossRefADSGoogle Scholar
  28. 28.
    R. Segev et al., Nat. Neurosci. 7, 1155 (2004) CrossRefGoogle Scholar
  29. 29.
    C. Stangl, P. Fromherz, Eur. J. Neurosci. 27, 958 (2008) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • A. Lambacher
    • 1
  • V. Vitzthum
    • 1
  • R. Zeitler
    • 1
  • M. Eickenscheidt
    • 1
  • B. Eversmann
    • 2
    • 3
  • R. Thewes
    • 2
    • 4
  • P. Fromherz
    • 1
    Email author
  1. 1.Department of Membrane and NeurophysicsMax Planck Institute for BiochemistryMunichGermany
  2. 2.Corporate ResearchInfineon TechnologiesMunichGermany
  3. 3.Advanced Embedded ControlTexas Instruments GermanyFreisingGermany
  4. 4.Chair of Sensor and Actuator Systems, Faculty of Electrical Engineering & Computer ScienceTechnical University BerlinBerlinGermany

Personalised recommendations