Time-resolved imaging of hydrogel printing via laser-induced forward transfer


In this work, the printing mechanism of an alginate-based hydrogel via laser-induced forward transfer (LIFT) is investigated by spatial and temporal high-resolved stroboscopic imaging. First, the generation of the liquid jet is studied at two different laser fluences in a process without collector slide. Furthermore, the impingement process onto the collector slide at the same fluence levels is observed. With the help of these images the development of the jet is explained. Besides the influences of the collector slide as well as the applied laser fluence on the transfer are demonstrated.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    D.B. Chrisey, The power of direct writing. Science 289, 879–881 (2000)

  2. 2.

    B.R. Ringeisen, C.M. Othon, J.A. Barron, D. Young, B.J. Spargo, Jet-based methods to print living cells. Biotechnol. J. 1, 930–948 (2006)

  3. 3.

    L. Koch, S. Kuhn, H. Sorg, M. Gruene, S. Schlie, R. Gaebel, B. Polchow, K. Reimers, S. Stoelting, N. Ma, P.M. Vogt, G. Steinhoff, B. Chichkov, Laser printing of skin cells and human stem cells. Tissue Eng. Part C Methods (2009). doi:10.1089/ten.tec.2009.0397

  4. 4.

    A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, B. Chichkov, Laser printing of cells into 3-d scaffolds. Biofabrication 2, 014104 (2010)

  5. 5.

    Y. Nakata, T. Okada, Time-resolved microscopic imaging of the laser-induced forward transfer process. Appl. Phys. A 69(Suppl.), 275–278 (1999)

  6. 6.

    I. Zergioti, D. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, A. Rode, A comparative schlieren imaging study between ns and sub-ps laser forward transfer of cr. Appl. Surf. Sci. 208–209, 177–180 (2003)

  7. 7.

    R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Shadowgraphy investigation of laser-induced forward transfer: Front side and back side ablation of the triazene polymer sacrificial layer. Appl. Surf. Sci. 255, 5430–5434 (2009)

  8. 8.

    D. Young, R.C.Y. Auyeung, A. Piqué, D.B. Chrisey, D.D. Dlott, Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy. Appl. Surf. Sci. 197–198, 181–187 (2002)

  9. 9.

    M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Jet formation in the laser forward transfer of liquids. Appl. Phys. A 93, 453–456 (2008)

  10. 10.

    P. Serra, M. Duocastella, J. Fernández-Pradas, J. Morenza, Liquids microprinting through laser-induced forward transfer. Appl. Surf. Sci. 255, 5342–5345 (2009)

  11. 11.

    M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Time-resolved imaging of the laser forward transfer of liquids. J. Appl. Phys. 106, 084907 (2009)

  12. 12.

    M. Duocastella, J. Fernández-Pradas, J. Morenza, P. Serra, Sessile droplet formation in the laser-induced forward transfer of liquids: A time-resolved imaging study. Thin Solid Films 518, 5321–5325 (2010)

  13. 13.

    J. Barron, H. Young, D. Dlott, M. Darfler, D. Krizman, B. Ringeisen, Printing of protein microarrays via capillary-free fluid jetting mechanism. Proteomics 5, 4138–4144 (2005)

  14. 14.

    D. Young, R.C.Y. Auyeung, A. Piqué, D.B. Chrisey, D.D. Dlott, Time-resolved optical microscopy of a laser-based forward transfer process. Appl. Phys. Lett. 78, 3169–3171 (2001)

  15. 15.

    B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Koloszsvari, D. Chrisey, A. Szabo, A. Nogradi, Survival and proliferation ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11, 1817–1823 (2005)

  16. 16.

    C. Clasen, J. Eggers, M.A. Fontelos, J. Li, G.H. McKinley, The beads-on-string structure of viscoelastic threads. J. Fluid Mech. 556, 283–308 (2006)

  17. 17.

    L.E. Rodd, T.P. Scott, J.J. Cooper-White, G.H. McKinley, Capillary break-up rheometry of low-viscosity elastic fluids. Appl. Rheol. 15, 12–27 (2005)

  18. 18.

    M. Gruene, A. Deiwick, L. Koch, S. Schlie, C. Unger, N. Hofmann, I. Bernemann, B. Glasmacher, B.N. Chichkov, Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng. Part C Methods (2010). doi:10.1089/ten.TEC.2010.0359

  19. 19.

    P.B. Robinson, J.R. Blake, T. Kodama, A. Shima, Y. Tomita, Interaction of cavitation bubbles with a free surface. J. Appl. Phys. 89, 8225–8237 (2001)

  20. 20.

    A. Pearson, E. Cox, J.R. Blake, S.R. Otto, Bubble interactions near a free surface. Eng. Anal. Bound. Elem. 28(4), 295–313 (2004)

  21. 21.

    A. Antkowiak, N. Bremond, S.L. Dizes, E. Villermaux, Short-term dynamics of a density interface following an impact. J. Fluid Mech. 577, 241–250 (2007)

  22. 22.

    J.-M. Cheny, K. Walters, Rheological influences on the splashing experiment. J. Non-Newtonian Fluid Mech. 86, 185–210 (1999)

  23. 23.

    S. Chandra, C. Avedisian, On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 13–41 (1991)

  24. 24.

    M. Rein, Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12, 61–93 (1993)

  25. 25.

    T. Mao, D. Kuhn, H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces. AiChE J. 43, 2169–2179 (1997)

  26. 26.

    X. Zhang, O. Basaran, Dynamic surface tension effects in impact of a drop with a solid surface. J. Colloid Interface Sci. 187, 166–178 (1997)

  27. 27.

    I.V. Roisman, R. Rioboo, C. Tropea, Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 1411–1430 (2002)

  28. 28.

    S. Sikalo, M. Marengo, C. Tropea, E.N. GaniImage, Analysis of impact of droplets on horizontal surfaces. Exp. Therm. Fluid Sci. 25, 503–510 (2002)

  29. 29.

    D.B. van Dama, C.L. Clerc, Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16, 3404–3414 (2004)

  30. 30.

    A.M. Worthington, On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261–272 (1877)

  31. 31.

    M. Bussmann, S. Chandra, J. Mostagshimi, Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 12, 3121–3132 (2000)

Download references

Author information

Correspondence to Claudia Unger.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(AVI 4.47 MB)

(AVI 4.47 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Unger, C., Gruene, M., Koch, L. et al. Time-resolved imaging of hydrogel printing via laser-induced forward transfer. Appl. Phys. A 103, 271–277 (2011).

Download citation


  • Vapor Bubble
  • Retention Force
  • Sessile Droplet
  • Forward Transfer
  • Critical Weber Number