Advertisement

Applied Physics A

, Volume 102, Issue 1, pp 27–33 | Cite as

Femtosecond laser interaction with pulsed-laser deposited carbon thin films of nanoscale thickness

  • M. Forster
  • L. Égerházi
  • C. Haselberger
  • C. Huber
  • W. Kautek
Open Access
Rapid communication

Abstract

The dependence of optical, electronic and thermal penetration zones on the thickness of nanoscale layers grown on silicon wafers is reported. Tetrahedral amorphous carbon (ta-C) and amorphous carbon nitride (a-CxNy) films were prepared by inverse pulsed laser deposition (IPLD). Single-pulse modification thresholds for femtosecond laser processing proved to be dependent on the actual film thickness below 60 nm for ta-C and 90 nm for a-CxNy. The modification behaviour was governed by multiphoton processes. An effective penetration depth of the laser radiation in a-CxNy was of ca. 110 nm in accordance with two-photon absorption. Both the emergence length of ballistic hot electrons and the heat diffusion length are negligible in these thin film materials. The lower bulk value of the threshold fluence of the a-CxNy films as compared to ta-C is mainly controlled by optical contributions due to nitrogen-related defects.

Keywords

Femtosecond Laser Ablation Threshold Carbon Nitride Multiphoton Process Optical Penetration Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000) Google Scholar
  2. 2.
    A. Miotello, P.M. Ossi (eds.), Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties. Springer Series in Materials Science, vol. 130 (Springer, Berlin, 2010) Google Scholar
  3. 3.
    K. Sugioka, M. Meunier, A. Piqué (eds.), Laser Precision Microfabrication. Springer Series in Materials Science, vol. 135 (Springer, Berlin, 2010) Google Scholar
  4. 4.
    B. Volkel, G. Kaltenpoth, M. Handrea, M. Sahre, C.T. Nottbohm, A. Kuller, A. Paul, W. Kautek, W. Eck, A. Golzhauser, Surf. Sci. 597, 32–41 (2005) CrossRefADSGoogle Scholar
  5. 5.
    A. Gölzhauser, W. Eck, W. Geyer, V. Stadler, T. Weimann, P. Hinze, M. Grunze, Adv. Mater. 13, 803–806 (2001) CrossRefGoogle Scholar
  6. 6.
    C. Ebm, E. Platzgummer, H. Loeschner, S. Eder-Kapl, P. Joechl, M. Kuemmel, R. Reitinger, G. Hobler, A. Koeck, R. Hainberger, M. Wellenzohn, F. Letzkus, M. Irmscher, J. Vac. Sci. Technol. B 27, 2668–2673 (2009) CrossRefGoogle Scholar
  7. 7.
    A. Gölzhauser, W. Geyer, V. Stadler, W. Eck, M. Grunze, K. Edinger, T. Weimann, P. Hinze, J. Vac. Sci. Technol., B 18, 3414–3418 (2000) CrossRefGoogle Scholar
  8. 8.
    L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, 2nd edn. Springer Series in Optical Sciences (Springer, Berlin, 1998) Google Scholar
  9. 9.
    A. Miotello, R. Kelly, Appl. Phys. A, Mater. Sci. Process. 69, 67–73 (1999) ADSGoogle Scholar
  10. 10.
    W. Kautek, M. Forster, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A. Piqué. Springer Series in Materials Science, vol. 135 (Springer, Berlin, 2010), pp. 189–214 CrossRefGoogle Scholar
  11. 11.
    S. Kuper, M. Stuke, Appl. Phys. B, Photophys. Laser Chem. 44, 199–204 (1987) CrossRefADSGoogle Scholar
  12. 12.
    W. Kautek, S. Mitterer, J. Krüger, W. Husinsky, G. Grabner, Appl. Phys. A, Mater. Sci. Process. 58, 513–518 (1994) CrossRefADSGoogle Scholar
  13. 13.
    J. Krüger, W. Kautek, Laser Phys. 9, 30–40 (1999) Google Scholar
  14. 14.
    C.R. Phipps (ed.), Laser Ablation and Its Applications. Springer Series in Optical Sciences, vol. 129 (Springer, New York, 2007) Google Scholar
  15. 15.
    J. Krüger, W. Kautek, Adv. Polym. Sci. 168, 247–289 (2004) CrossRefGoogle Scholar
  16. 16.
    W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, F. Krausz, Appl. Phys. Lett. 69, 3146–3148 (1996) CrossRefADSGoogle Scholar
  17. 17.
    M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80, 4076–4079 (1998) CrossRefADSGoogle Scholar
  18. 18.
    M. Lenzner, F. Krausz, J. Krüger, W. Kautek, Appl. Surf. Sci. 154, 11–16 (2000) CrossRefADSGoogle Scholar
  19. 19.
    E. Matthias, M. Reichling, J. Siegel, O.W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, Appl. Phys. A, Mater. Sci. Process. 58, 129–136 (1994) ADSGoogle Scholar
  20. 20.
    G. Daminelli, S. Pentzien, A. Hertwig, J. Krüger, Appl. Phys. A, Mater. Sci. Process. 83, 89–94 (2006) CrossRefADSGoogle Scholar
  21. 21.
    E. Matthias, J. Siegel, S. Petzoldt, M. Reichling, H. Skurk, O. Kading, E. Neske, Thin Solid Films 254, 139–146 (1995) CrossRefADSGoogle Scholar
  22. 22.
    S. Preuss, E. Matthias, M. Stuke, Appl. Phys. A, Mater. Sci. Process. 59, 79–82 (1994) CrossRefADSGoogle Scholar
  23. 23.
    Y. Hirayama, P.A. Atanasov, M. Obara, N.N. Nedialkov, S.E. Imamova, Jpn. J. Appl. Phys. Part 1 45, 792–797 (2006) CrossRefGoogle Scholar
  24. 24.
    R.R. Fang, D.M. Zhang, H. Wei, Z.H. Li, F.X. Yang, X.Y. Tan, Chin. Phys. Lett. 25, 3716–3719 (2008) CrossRefADSGoogle Scholar
  25. 25.
    J. Krüger, D. Dufft, R. Koter, A. Hertwig, Appl. Surf. Sci. 253, 7815–7819 (2007) CrossRefADSGoogle Scholar
  26. 26.
    R. Koter, M. Weise, A. Hertwig, U. Beck, J. Krüger, J. Optoelectron. Adv. Mater. 12, 663–667 (2010) Google Scholar
  27. 27.
    L. Egerhazi, Z. Geretovszky, T. Szorenyi, Appl. Phys. A, Mater. Sci. Process. 93, 789–793 (2008) CrossRefADSGoogle Scholar
  28. 28.
    T. Szorenyi, Z. Geretovszky, Thin Solid Films 453–454, 431–435 (2004) CrossRefGoogle Scholar
  29. 29.
    P. Boher, E. Fogarassy, T. Szorenyi, F. Antoni, Surf. Coat. Technol. 151, 144–150 (2002) CrossRefGoogle Scholar
  30. 30.
    E. Carpene, E. Mancini, C. Dallera, D. Schwen, C. Ronning, S. De Silvestri, New J. Phys. 9, 404 (2007) CrossRefADSGoogle Scholar
  31. 31.
    N. Matuschek, F.X. Kartner, U. Keller, IEEE J. Sel. Top. Quantum Electron. 4, 197–208 (1998) CrossRefGoogle Scholar
  32. 32.
    S. Baudach, J. Bonse, J. Krüger, W. Kautek, Appl. Surf. Sci. 154, 555–560 (2000) CrossRefADSGoogle Scholar
  33. 33.
    S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, M. Castillejo, Phys. Chem. Chem. Phys. 10, 6174–6181 (2008) CrossRefGoogle Scholar
  34. 34.
    G. Daminelli, J. Krüger, W. Kautek, Thin Solid Films 467, 334–341 (2004) CrossRefADSGoogle Scholar
  35. 35.
    N. Yasumaru, K. Miyazaki, J. Kiuchi, Appl. Phys. A, Mater. Sci. Process. 76, 983–985 (2003) CrossRefADSGoogle Scholar
  36. 36.
    G. Dumitru, V. Romano, H.P. Weber, S. Pimenov, T. Kononenko, M. Sentis, J. Hermann, S. Bruneau, Appl. Surf. Sci. 222, 226–233 (2004) CrossRefADSGoogle Scholar
  37. 37.
    L.K. Cheah, X. Shi, E. Liu, J.R. Shi, Appl. Phys. Lett. 73, 2473–2475 (1998) CrossRefADSGoogle Scholar
  38. 38.
    E. Staryga, G.W. Bak, Diam. Relat. Mater. 14, 23–34 (2005) CrossRefADSGoogle Scholar
  39. 39.
    S. Bhattacharyya, S.J. Henley, E. Mendoza, L. Gomez-Rojas, J. Allam, S.R.P. Silva, Nat. Mater. 5, 19–22 (2006) CrossRefADSGoogle Scholar
  40. 40.
    J. Robertson, Mater. Sci. Eng., R 37, 129–281 (2002) CrossRefGoogle Scholar
  41. 41.
    S.E. Rodil, S. Muhl, S. Maca, A.C. Ferrari, Thin Solid Films 433, 119–125 (2003) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • M. Forster
    • 1
  • L. Égerházi
    • 1
    • 2
    • 3
  • C. Haselberger
    • 1
  • C. Huber
    • 1
  • W. Kautek
    • 1
  1. 1.Department of Physical ChemistryUniversity of ViennaViennaAustria
  2. 2.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  3. 3.Institute of Medical Physics and BiophysicsUniversity of SzegedSzegedHungary

Personalised recommendations