Advertisement

Applied Physics A

, Volume 102, Issue 2, pp 301–308 | Cite as

Vibration of ZnO nanotubes: a molecular mechanics approach

  • R. ChowdhuryEmail author
  • S. Adhikari
  • F. Scarpa
Article

Abstract

We investigate the vibrational properties of two kinds of single-wall ZnO nanotubes. The simulations are carried out for three types of zigzag nanotubes (5,0), (8,0), (10,0) and armchair nanotubes (3,3), (4,4), (6,6). The natural frequencies are determined by means of the molecular mechanics approach with the universal force field potential. The first four natural frequencies are obtained for length/diameter ratio of about 5–20. The vibration modes associated with these frequencies have been computed. Closed-form analytical expressions have been derived using the continuum shell theory for the physical explanations of the simulations results. We observe that the natural frequencies decrease as the aspect ratios increase. The results follow similar trends with results of previous studies for carbon nanotubes (CNT). However, the magnitudes of the frequencies are lower from the corresponding CNT counterparts, indicating that ZnO nanotubes are comparatively less stiff.

Keywords

Vibrational analysis ZnO nanotube Molecular mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. Cho, H. Morkoc, J. Appl. Phys. 98(4), 041301 (2005) CrossRefADSGoogle Scholar
  2. 2.
    Z.C. Tu, X. Hu, Phys. Rev. B 74(3), 035434 (2006) CrossRefADSGoogle Scholar
  3. 3.
    D. Look, D. Reynolds, J. Sizelove, R. Jones, C. Litton, G. Cantwell, W. Harsch, Solid State Commun. 105(6), 399 (1998) CrossRefADSGoogle Scholar
  4. 4.
    Z. Fu-Chun, Z. Zhi-Yong, Z. Wei-Hu, Y. Jun-Feng, Y. Jiang-Ni, Chin. Phys. Lett. 26(1), 016105 (2009) CrossRefADSGoogle Scholar
  5. 5.
    Q. Wan, Z. Xiong, J. Dai, J. Rao, F. Jiang, Opt. Mater. 30, 817 (2008) CrossRefADSGoogle Scholar
  6. 6.
    Y. Yu-Rong, Y. Xiao-Hong, G. Zhao-Hui, D. Yu-Xiang, Chin. Phys. B 17(9), 3433 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    F. Decremps, F. Datchi, A. Saitta, A. Polian, S. Pascarelli, A. Di Cicco, J. Itie, F. Baudelet, Phys. Rev. B 68(10), 104101 (2003) CrossRefADSGoogle Scholar
  8. 8.
    Z. Tang, G. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Appl. Phys. Lett. 72(25), 3270 (1998) CrossRefADSGoogle Scholar
  9. 9.
    Z. Wang, J. Phys. Condens. Matter 16(25), R829 (2004) CrossRefADSGoogle Scholar
  10. 10.
    Y. Sun, D.J. Riley, M.N.R. Ashfold, J. Phys. Chem. B 110(31), 15186 (2006) CrossRefGoogle Scholar
  11. 11.
    X.J. Liu, J.W. Li, Z.F. Zhou, L.W. Yang, Z.S. Ma, G.F. Xie, Y. Pan, C.Q. Sun, Appl. Phys. Lett. 94(13), 131902 (2009) CrossRefADSGoogle Scholar
  12. 12.
    W.F. Perger, J. Criswell, B. Civalleri, R. Dovesi, Comput. Phys. Commun. 180(10), 1753 (2009) CrossRefADSGoogle Scholar
  13. 13.
    J. Qi, D. Shi, B. Wang, Comput. Mater. Sci. 46(2), 303 (2009) CrossRefGoogle Scholar
  14. 14.
    H. Ni, X. Li, Nanotechnology 17(14), 3591 (2006) CrossRefADSGoogle Scholar
  15. 15.
    M. Arnold, P. Avouris, Z. Pan, Z. Wang, J. Phys. Chem. B 107(3), 659 (2003) CrossRefGoogle Scholar
  16. 16.
    R. Zhu, D. Wang, S. Xiang, Z. Zhou, X. Ye, Sens. Actuators A 154(2), 224 (2009). Special Issue CrossRefGoogle Scholar
  17. 17.
    A. Asthana, K. Momeni, A. Prasad, Y.K. Yap, R.S. Yassar, Appl. Phys. Lett. 95(17), 172106 (2009) CrossRefADSGoogle Scholar
  18. 18.
    R. Agrawal, H.D. Espinosa, J. Eng. Mater. Technol., Trans. ASME 131(4), 041208 (2009) CrossRefGoogle Scholar
  19. 19.
    A.V. Desai, M.A. Haque, Sens. Actuators A 134(1), 169 (2007). Special Issue CrossRefGoogle Scholar
  20. 20.
    M. Riaz, O. Nur, M. Willander, P. Klason, Appl. Phys. Lett. 92(10), 034309 (2008) CrossRefGoogle Scholar
  21. 21.
    M. Lucas, W. Mai, R. Yang, Z.L. Wang, E. Riedo, Nano Lett. 7(5), 1314 (2007) CrossRefADSGoogle Scholar
  22. 22.
    W. Mai, Z.L. Wang, Appl. Phys. Lett. 89(7), 073112 (2006) CrossRefADSGoogle Scholar
  23. 23.
    X. Bai, P. Gao, Z. Wang, E. Wang, Appl. Phys. Lett. 82(26), 4806 (2003) CrossRefADSGoogle Scholar
  24. 24.
    X. Shen, P.B. Allen, J.T. Muckerman, J.W. Davenport, J.C. Zheng, Nano Lett. 7(8), 2267 (2007) CrossRefADSGoogle Scholar
  25. 25.
    C. Chen, Y. Shi, Y. Zhang, J. Zhu, Y. Yan, Phys. Rev. Lett. 96(7), 075505 (2006) CrossRefADSGoogle Scholar
  26. 26.
    A. Kulkarni, M. Zhou, F. Ke, Nanotechnology 16(12), 2749 (2005) CrossRefADSGoogle Scholar
  27. 27.
    A.J. Kulkarni, M. Zhou, Acta Mech. Sin. 22(3), 217 (2006) CrossRefADSzbMATHGoogle Scholar
  28. 28.
    Y. Sun, G. Fuge, N. Fox, D. Riley, M. Ashfold, Adv. Mater. 17(20), 2477 (2005) CrossRefGoogle Scholar
  29. 29.
    H. Li, Z.H. Jiang, Q. Jiang, Chem. Phys. Lett. 465(1–3), 78 (2008) ADSGoogle Scholar
  30. 30.
    S. Erkoc, H. Kokten, Phys. E-Low-Dimens. Syst. Nanostruct. 28(2), 162 (2005) CrossRefADSGoogle Scholar
  31. 31.
    Z. Fan, J. Lu, J. Nanosci. Nanotechnol. 5(10), 1561 (2005) CrossRefGoogle Scholar
  32. 32.
    X. Kong, X. Sun, X. Li, Y. Li, Mater. Chem. Phys. 82(3), 997 (2003) CrossRefGoogle Scholar
  33. 33.
    H. Xu, F. Zhan, A.L. Rosa, T. Frauenheim, R.Q. Zhang, Solid State Commun. 148(11–12), 534 (2008) CrossRefADSGoogle Scholar
  34. 34.
    Y. Li, Z. Zhou, Y. Chen, Z. Chen, J. Chem. Phys. 130(20), 204706 (2009) CrossRefADSGoogle Scholar
  35. 35.
    C. Li, T.W. Chou, Int. J. Solids Struct. 40(10), 2487 (2003) CrossRefzbMATHGoogle Scholar
  36. 36.
    K. Hashemnia, M. Farid, R. Vatankhah, Comput. Mater. Sci. 47(1), 79 (2009) CrossRefGoogle Scholar
  37. 37.
    F. Scarpa, S. Adhikari, J. Non-Cryst. Solids 354(35–39), 4151 (2008) CrossRefADSGoogle Scholar
  38. 38.
    S.K. Georgantzinos, G.I. Giannopoulos, N.K. Anifantis, Comput. Mech. 43(6), 731 (2009) CrossRefzbMATHGoogle Scholar
  39. 39.
    H. Xu, R.Q. Zhang, X. Zhang, A.L. Rosa, T. Frauenheim, Nanotechnology 18(48), 485713 (2007) CrossRefGoogle Scholar
  40. 40.
    R. Chowdhury, S. Adhikari, F. Scarpa, Phys. E-Low-Dimens. Syst. Nanostruct. 42(8), 2036 (2010) CrossRefADSGoogle Scholar
  41. 41.
    Y. Xing, Z. Xi, X. Zhang, J. Song, R. Wang, J. Xu, Z. Xue, D. Yu, Solid State Commun. 129(10), 671 (2004) CrossRefADSGoogle Scholar
  42. 42.
    A. Wei, X. Sun, C. Xu, Z. Dong, M. Yu, W. Huang, Appl. Phys. Lett. 88(21), 213102 (2006) CrossRefADSGoogle Scholar
  43. 43.
    Z. Zhou, Y. Li, L. Liu, Y. Chen, S.B. Zhang, Z. Chen, J. Phys. Chem. C 112(36), 13926 (2008) CrossRefGoogle Scholar
  44. 44.
    B. Wang, S. Nagase, J. Zhao, G. Wang, Nanotechnology 18(34), 345706 (2007) CrossRefGoogle Scholar
  45. 45.
    A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114(25), 10024 (1992) CrossRefGoogle Scholar
  46. 46.
    D.F. McIntosh, Theor. Chem. Acc., Theory Comput. Model. 125(3–6), 177 (2010) Google Scholar
  47. 47.
    R. Chowdhury, S. Adhikari, C.Y. Wang, F. Scarpa, Comput. Mater. Sci. 48(4), 730 (2010) CrossRefGoogle Scholar
  48. 48.
    W. Soedel, Vibration of Shells and Plates, 3rd edn. (Marcel Dekker, New York, 2004) Google Scholar
  49. 49.
    F. Scarpa, C.W. Smith, M. Ruzzene, K. Wadee, Phys. Stat. Solidi B 245(3), 584 (2008) CrossRefADSGoogle Scholar
  50. 50.
    S.M. Jeong, M. Ruzzene, Shock Vib. 11(3–4), 311 (2004) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Multidisciplinary Nanotechnology CentreSwansea UniversitySwanseaUK
  2. 2.Advanced Composites Centre for Innovation and ScienceUniversity of BristolBristolUK

Personalised recommendations