Advertisement

Applied Physics A

, Volume 103, Issue 1, pp 173–178 | Cite as

Combined effect of EUV irradiation and acetone treatment on PET surface

  • A. BartnikEmail author
  • H. Fiedorowicz
  • S. Burdyńska
  • R. Jarocki
  • J. Kostecki
  • M. Szczurek
Article

Abstract

In this work, the radiation from a laser-plasma extreme ultraviolet (EUV) source based on a double-stream gas-puff target was used for surface modification of polyethylene terephthalate (PET). The spectrum of the wide band radiation focused with a gold-coated ellipsoidal collector consisted of a narrow feature with maximum at 10 nm and a long-wavelength tail up to 70 nm. The PET samples were mounted in the focal plane of the EUV collector or at some distance downstream this plane and irradiated for 0.1 s–2 min with 10-Hz repetition rate. The polymer samples after irradiation were rinsed in acetone. Surface morphologies of the PET samples after irradiation were investigated using a scanning electron microscope and atomic force microscope. Different kinds of surface micro- and nanostructures were created as a result of irradiation depending on the EUV fluence and number of pulses. Acetone treatment of the polymer samples after irradiation resulted in formation of additional nanostructures. In this case the nanostructures were revealed even after exposure with a single EUV pulse.

Keywords

Focal Spot Ablation Threshold Ribbon Structure Acetone Treatment Acetone Rinsing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Bacakova, V. Mares, V. Lisa, V. Svorcik, Biomaterials 21, 1173–1179 (2000) CrossRefGoogle Scholar
  2. 2.
    M. Collaud Coen, R. Lehmann, P. Groening, L. Schlapbach, Appl. Surf. Sci. 207, 276–286 (2003) CrossRefADSGoogle Scholar
  3. 3.
    T. Lippert, Adv. Polym. Sci. 168, 51–246 (2004) CrossRefGoogle Scholar
  4. 4.
    T. Gumpenberger, J. Heitz, D. Bauerle, H. Kahr, I. Graz, C. Romanin, V. Svorcik, F. Leisch, Biomaterials 24, 5139–5144 (2003) CrossRefGoogle Scholar
  5. 5.
    R. Mikulikova, S. Moritz, T. Gumpenberger, M. Olbrich, C. Romanin, L. Bacakova, V. Svorcik, J. Heitz, Biomaterials 26, 5572–5580 (2005) CrossRefGoogle Scholar
  6. 6.
    B. Hopp, Zs. Bor, E. Homolya, E. Mihalik, Appl. Surf. Sci. 109/110, 232–235 (1997) CrossRefGoogle Scholar
  7. 7.
    N.S. Murthy, R.D. Prabhu, J.J. Martin, L. Zhou, R.L. Headrick, J. Appl. Phys. 100, 023538 (2006) CrossRefADSGoogle Scholar
  8. 8.
    E. Sarantopoulou, Z. Kollia, A.C. Cefalas, A.M. Douvas, M. Chatzichristidi, P. Argitis, S. Kobe, Appl. Surf. Sci. 253, 7884–7889 (2007) CrossRefADSGoogle Scholar
  9. 9.
    W. Chen, J. Zhang, Q. Fang, K. Hu, I.W. Boyd, Thin Solid Films 453–454, 3–6 (2004) CrossRefGoogle Scholar
  10. 10.
    M. Rauh, J. Ihlemann, A. Koch, Appl. Phys. A 88, 231–233 (2007) CrossRefADSGoogle Scholar
  11. 11.
    A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A. Szczurek, M. Szczurek, Appl. Phys. B 96, 727–730 (2009) CrossRefADSGoogle Scholar
  12. 12.
    P. Laurens, S. Petit, F. Arefi-Khonsari, Plasmas Polym. 8, 281–295 (2003) CrossRefGoogle Scholar
  13. 13.
    J. Heitz, E. Arenholz, D. Bauerle, H. Hibst, A. Hagemeyer, G. Cox, Appl. Phys. A 56, 329–333 (1993) CrossRefADSGoogle Scholar
  14. 14.
    A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, M. Szczurek, Appl. Phys. A 98, 61–65 (2010) CrossRefADSGoogle Scholar
  15. 15.
    T. Mocek, J. Polan, P. Homer, K. Jakubczak, B. Rus, I.J. Kim, C.M. Kim, G.H. Lee, C.H. Nam, V. Hájková, J. Chalupský, L. Juha, J. Appl. Phys. 105, 026105 (2009) CrossRefADSGoogle Scholar
  16. 16.
    E. Arenholz, V. Svorcik, T. Kefer, J. Heitz, D. Bauerle, Appl. Phys. A 53, 330–331 (1991) CrossRefADSGoogle Scholar
  17. 17.
    J. Heitz, E. Arenholz, D. Bauerle, R. Sauerbrey, H.M. Phillips, Appl. Phys. A 59, 289–293 (1994) CrossRefADSGoogle Scholar
  18. 18.
    A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, M. Szczurek, A. Bilinski, O. Chernyayeva, J.W. Sobczak, Appl. Phys. A 99, 831–836 (2010) CrossRefADSGoogle Scholar
  19. 19.
    J. Chalupsky, L. Juha, V. Hájková, J. Cihelka, L. Vyšín, J. Gautier, J. Hajdu, S.P. Hau-Riege, M. Jurek, J. Krzywinski, R.A. London, E. Papalazarou, J.B. Pelka, G. Rey, S. Sebban, R. Sobierajski, N. Stojanovic, K. Tiedtke, S. Toleikis, T. Tschentscher, C. Valentin, H. Wabnitz, P. Zeitoun, Opt. Express 17, 208–217 (2009) CrossRefADSGoogle Scholar
  20. 20.
    Z. Li, W. Zhao, Y. Liu, M.H. Rafailovich, J. Sokolov, K. Khougaz, A. Eisenberg, R.B. Lennox, G. Krausch, J. Am. Chem. Soc. 118, 10892–10893 (1996) CrossRefGoogle Scholar
  21. 21.
    K. Albrecht, A. Mourran, M. Moeller, Adv. Polym. Sci. 200, 57–70 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Bartnik
    • 1
    Email author
  • H. Fiedorowicz
    • 1
  • S. Burdyńska
    • 1
  • R. Jarocki
    • 1
  • J. Kostecki
    • 1
  • M. Szczurek
    • 1
  1. 1.Institute of OptoelectronicsMilitary University of TechnologyWarsawPoland

Personalised recommendations