Applied Physics A

, Volume 102, Issue 3, pp 699–704

Phase transition of TiO2 thin films detected by the pulsed laser photoacoustic technique

  • A. Pérez-Pacheco
  • R. Castañeda-Guzmán
  • C. Oliva Montes de Oca
  • A. Esparza-García
  • S. J. Pérez Ruiz
Article

Abstract

In this work, we present characterization of titanium oxide thin films by photoacoustic measurements to determine the ablation threshold and phase transitions from amorphous to crystalline states. The important advantages of this method are that it does not require amplification at the detection stage and that it is a non-destructive technique. The correlation analysis of the photoacoustic signals allows us to visualize the ablation threshold and the phase transitions with enhanced sensitivity. This correlation analysis clearly exhibits the changes in the thin-film morphology due to controlled variations of the fluence (energy/area) and the temperature of the surrounding medium. This is particularly important for those cases where the crystalline changes caused by temperature variations need to be monitored. The thin-film samples were prepared by the sputtering technique at room temperature in the amorphous state. The phase transformations were induced by controlled temperature scanning and then corroborated with Raman spectroscopy measurements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, J. Phys. D, Appl. Phys. 33, 912 (2000) CrossRefADSGoogle Scholar
  2. 2.
    C.-C. Ting, S.-Y. Chen, D.-M. Liu, J. Appl. Phys. 88, 4628 (2000) CrossRefADSGoogle Scholar
  3. 3.
    M.A.C. López, L.E. Alarcón, E.H. Poniatowski, Appl. Phys. A 78, 59 (2004) CrossRefADSGoogle Scholar
  4. 4.
    E. Haro, Z.S. Xu, J.-F. Morhange, M. Balkanski, Phys. Rev. B 32, 969 (1985) CrossRefADSGoogle Scholar
  5. 5.
    P. Arun, A.G. Vedeshwar, N.C. Mehra, J. Phys. D, Appl. Phys. 32, 183 (1999) CrossRefADSGoogle Scholar
  6. 6.
    L.K. Malhotra, Y. Sripathi, G.B. Reddy, Bull. Mater. Sci. 18, 725 (1995) CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, X. Ma, P. Chen, D. Yang, J. Cryst. Growth 300, 551 (2007) CrossRefADSGoogle Scholar
  8. 8.
    W. Li, C. Ni, H. Lin, C.P. Huang, S.I. Shah, J. Appl. Phys. 96, 6663 (2004) CrossRefADSGoogle Scholar
  9. 9.
    A.S. Barnard, P. Zapol, L.A. Curtiss, J. Chem. Theory Comput. 1, 107 (2005) CrossRefGoogle Scholar
  10. 10.
    R.C. Guzmán, M.V. Muniz, J.M.S. Blesa, O.P. Martínez, Appl. Phys. Lett. 73, 623 (1998) CrossRefADSGoogle Scholar
  11. 11.
    E.V.M. Uriarte, R.C. Guzmán, M.V. Muniz, E. Camarillo, J.A. Hernández, H. Murrieta, M. Navarrete, J. Phys., Condens. Matter 15, 6889 (2003) CrossRefADSGoogle Scholar
  12. 12.
    M.C. Marchi, R.C. Guzmán, A.P. Pacheco, S.A. Bilmes, M.V. Muniz, Int. J. Thermophys. 25, 491 (2004) CrossRefADSGoogle Scholar
  13. 13.
    A.G. Bell, J. Sci. 20, 305 (1880) Google Scholar
  14. 14.
    V.S. Chivukula, M.S. Shur, D. Ciplys, Phys. Status Solidi (a) 204, 3209 (2007) CrossRefADSGoogle Scholar
  15. 15.
    R.C. Guzman, S.J.P. Ruiz, M.V. Muniz, J.M.S. Blesa, Anal. Sci. 17, 122 (2001) Google Scholar
  16. 16.
    A.P. Pacheco, C. Prieto, R.C. Guzmán, J.G. López, Thin Solid Films 517, 5415 (2009) CrossRefADSGoogle Scholar
  17. 17.
    A.C. Tam, Rev. Mod. Phys. 58, 381 (1986) CrossRefADSGoogle Scholar
  18. 18.
    J. Yang, H. Bai, X. Tan, J. Lian, Appl. Surf. Sci. 253, 1988 (2006) CrossRefADSGoogle Scholar
  19. 19.
    F.J. Ager, I. Justicia, R. Gerbasi, G.A. Battiston, N. McSporran, A. Figueras, Nucl. Instrum. Methods Phys. Res. B 249, 490 (2006) CrossRefADSGoogle Scholar
  20. 20.
    L.R.F. Rose, J. Acoust. Soc. Am. 75, 723 (1984) MATHCrossRefADSGoogle Scholar
  21. 21.
    I. Apostol, R. Stoian, R. Dabu, A. Stratan, Appl. Surf. Sci. 136, 166 (1998) CrossRefADSGoogle Scholar
  22. 22.
    V.V. Yakovlev, G. Scarel, C.R. Aita, S. Mochizuki, Appl. Phys. Lett. 76, 1107 (2000) CrossRefADSGoogle Scholar
  23. 23.
    N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, Thin Solid Films 300, 113 (1997) CrossRefADSGoogle Scholar
  24. 24.
    J. Ragai, W. Lotfi, Colloids Surf. 61, 97 (1991) CrossRefGoogle Scholar
  25. 25.
    R. Wang, K. Haschimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Adv. Mater. 10, 135 (1998) CrossRefGoogle Scholar
  26. 26.
    A. Kolouch, M. Horáková, P. Hájková, E. Heyduková, P. Exnar, P. Spatenka, Probl. At. Sci. Techn., Ser. Plasma Phys. 12, 1998 (2006) Google Scholar
  27. 27.
    N. Sakai, R. Wang, A. Fujishima, T. Watanabe, K. Hashimoto, Langmuir 14, 5918 (1998) CrossRefGoogle Scholar
  28. 28.
    M.A. Henderson, Surf. Sci. 355, 151 (1996) CrossRefADSGoogle Scholar
  29. 29.
    T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Thin Solid Films 351, 260 (1999) CrossRefADSGoogle Scholar
  30. 30.
    M. Janczarek, J. Hupka, H. Kisch, Physicochem. Probl. Mineral. Process. 40, 287 (2006) Google Scholar
  31. 31.
    R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, J. Phys. Chem. B 103, 2188 (1999) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • A. Pérez-Pacheco
    • 1
  • R. Castañeda-Guzmán
    • 1
  • C. Oliva Montes de Oca
    • 1
  • A. Esparza-García
    • 1
  • S. J. Pérez Ruiz
    • 2
  1. 1.Laboratorio de Fotofísica y Películas DelgadasUniversidad Nacional Autónoma de México, CCADET-UNAMMéxico D.F.Mexico
  2. 2.Acústica y VibracionesCCADET-UNAMMéxico D.F.Mexico

Personalised recommendations