Applied Physics A

, Volume 102, Issue 2, pp 319–323 | Cite as

Experimental evidence and physical understanding of ZnO vapor-liquid-solid nanowire growth

Article

Abstract

Metal-catalyst-assisted thermal chemical vapor transport is one of most popular techniques for ZnO nanowires preparation, and the vapor-liquid-solid (VLS) process is recognized to be responsible for ZnO nanowires growth upon metal-catalyst-assisted thermal chemical vapor transport. However, there have been very few investigations to provide substantial experimental evidence for supporting ZnO VLS nanowires growth upon metal-catalyst-assisted thermal chemical vapor transport, so far. Herein, we report a study of ZnO nanowires growth using metal-catalyst-assisted thermal chemical vapor transport based on laser ablation, and we provide solid experimental evidence for the VLS process of ZnO nanowires.

Keywords

Physical Understanding Nanowires Growth Chemical Vapor Transport Catalyst Droplet Substantial Experimental Evidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003) CrossRefGoogle Scholar
  2. 2.
    Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, J.R. LaRoche, Mater. Sci. Eng. 47, 1 (2004) CrossRefGoogle Scholar
  3. 3.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964) CrossRefADSGoogle Scholar
  4. 4.
    R.S. Wagner, W.C. Ellis, Trans. Metall. Soc. AIME 233, 1052 (1965) Google Scholar
  5. 5.
    S.N. Mohammad, Nano Lett. 8, 1532 (2008) CrossRefADSGoogle Scholar
  6. 6.
    E. Sutter, P. Sutter, Nano Lett. 8, 411 (2008) CrossRefADSGoogle Scholar
  7. 7.
    C. Borchers, S. Muller, D. Stichtenoth, D. Schwen, C. Ronning, J. Phys. Chem. B 110, 1656 (2006) CrossRefGoogle Scholar
  8. 8.
    D.X. Zhao, C. Andreazza, P. Andreazza, J.G. Ma, Y.C. Liu, D.Z. Shen, Chem. Phys. Lett. 399, 522 (2004) CrossRefADSGoogle Scholar
  9. 9.
    S. Hofmann, R. Sharma, C. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R.D. Borkowski, J. Drucker, P. Bennett, J. Robertson, Nat. Mater. 7, 372 (2008) CrossRefADSGoogle Scholar
  10. 10.
    T.B. Massalski, Binary Alloy Phase Diagrams (American Society for Metal, Metals Park, 1986) Google Scholar
  11. 11.
    J.H. He, J.H. Hsu, C.W. Wang, H.N. Lin, L.J. Chen, Z.L. Wang, J. Phys Chem. B 110, 50 (2006) CrossRefGoogle Scholar
  12. 12.
    G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.A. Zapien, Y.H. Leung, L.B. Luo, P.F. Wang, C.S. Lee, S.T. Lee, Nano Lett. 8, 2591 (2008) CrossRefADSGoogle Scholar
  13. 13.
    D. F Liu, Y. J Xiang, X. C Wu, Z. X Zhang, L. F Liu, L. Song, X.W. Zhao, S.D. Luo, W.J. Ma, J. Shen, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, Nano Lett. 6, 2375 (2006) CrossRefADSGoogle Scholar
  14. 14.
    S. Shafiei, A. Nourbakhsh, B. Ganjipour, M. Zahedifar, G.V. Nezhaad, Nanotechnology 18, 355708 (2007) CrossRefGoogle Scholar
  15. 15.
    H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, H. Kalt, Appl. Phys. Lett. 91, 181112 (2007) CrossRefADSGoogle Scholar
  16. 16.
    H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, Appl. Phys. Lett. 82, 2023 (2003) CrossRefADSGoogle Scholar
  17. 17.
    Y. Zhang, H.B. Jia, R.M. Wang, C.P. Chen, X.H. Luo, D.P. Yu, Appl. Phys. Lett. 83, 4631 (2003) CrossRefADSGoogle Scholar
  18. 18.
    D. Ito, M.L. Jespersen, J.E. Hutchison, ACS Nano 2, 2008 (2001) Google Scholar
  19. 19.
    X.D. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004) CrossRefADSGoogle Scholar
  20. 20.
    T. Yanagida, K. Nagashima, H. Tanaka, T. Kawai, Appl. Phys. Lett. 91, 061502 (2007) CrossRefADSGoogle Scholar
  21. 21.
    K. Nagashima, T. Yanagida, K. Oka, H. Tanaka, T. Kawai, Appl. Phys. Lett. 93, 153103 (2008) CrossRefADSGoogle Scholar
  22. 22.
    J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, Nature 440, 69 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Nanotechnology Research Center, School of Physics & EngineeringSun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations