Applied Physics A

, Volume 102, Issue 2, pp 477–483

Effects of the experimental conditions on the growth of crystalline ZnSe nano-needles by pulsed laser deposition

  • J. S. Lai
  • L. Chen
  • X. N. Fu
  • J. Sun
  • Z. F. Ying
  • J. D. Wu
  • N. Xu
Article

Abstract

Crystalline ZnSe nano-needles have been grown by pulsed laser deposition on Ni-coated substrates. In order to study the mechanism for the growth of ZnSe nano-needles, the experiment conditions including catalyst layer, substrate material, substrate temperature and deposition duration were changed respectively. The catalyst layer plays an important role in the growth of ZnSe nano-needles. The substrate material and substrate temperature also strongly affect the morphologies and structures of the as-grown ZnSe nano-crystals. On 300–400°C Ni-coated silicon (100) substrates, the crystalline ZnSe nano-needles can be grown densely with the middle diameters of about 20–80 nm, and the lengths of 100–400 nm. Two models for the growth of the ZnSe nano-needles and sphere-leading nano-wires under different substrate temperatures are proposed and verified experimentally.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Katayama, H. Yao, F. Nakanishi, H. Doi, A. Saegusa, T. Shirakawa, Appl. Phys. Lett. 73, 102 (1998) CrossRefADSGoogle Scholar
  2. 2.
    H. Ishikura, T. Abe, N. Fukuda, H. Kasada, K. Ando, Appl. Phys. Lett. 76, 1069 (2000) CrossRefADSGoogle Scholar
  3. 3.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science 287, 1471 (2000) CrossRefADSGoogle Scholar
  4. 4.
    M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415, 617 (2002) CrossRefADSGoogle Scholar
  5. 5.
    C.H. Hsiao, S.J. Chang, S.B. Wang, S.P. Chang, T.C. Li, W.J. Lin, C.H. Ko, T.M. Kuan, B.R. Huang, J. Electrochem. Soc. 156, 73 (2009) CrossRefGoogle Scholar
  6. 6.
    K. Wang, J. Chen, W. Zhou, Y. Zhang, Y. Yan, J. Pern, A. Mascarenhas, Adv. Mater. 20, 3248 (2008) CrossRefGoogle Scholar
  7. 7.
    E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldtand, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006) CrossRefGoogle Scholar
  8. 8.
    X.T. Zhang, K.M. Ip, Z. Liu, Y.P. Leung, Q. Li, S.K. Hark, Appl. Phys. Lett. 84, 2641 (2004) CrossRefADSGoogle Scholar
  9. 9.
    X.T. Zhang, Z. Liu, Y.P. Leung, Q. Li, S.K. Hark, Appl. Phys. Lett. 83, 5533 (2003) CrossRefADSGoogle Scholar
  10. 10.
    Y.C. Zhu, Y. Bando, Chem. Phys. Lett. 377, 367 (2003) CrossRefADSGoogle Scholar
  11. 11.
    B. Xiang, H.Z. Zhang, G.H. Li, F.H. Yang, F.H. Su, R.M. Wang, J. Xu, X.C. Lu, X.C. Sun, Q. Zhao, D.P. Yu, Appl. Phys. Lett. 82, 3330 (2002) CrossRefADSGoogle Scholar
  12. 12.
    Y.F. Chan, X.F. Duan, S.K. Chan, I.K. Sou, X.X. Zhang, N. Wang, Appl. Phys. Lett. 83, 2665 (2003) CrossRefADSGoogle Scholar
  13. 13.
    R. Solanki, J. Huo, J.L. Freeouf, Appl. Phys. Lett. 81, 3864 (2002) CrossRefADSGoogle Scholar
  14. 14.
    T. Zhang, T. Shen, W. Hu, J. Sun, J. Wu, Z. Ying, N. Xu, J. Vac. Sci. Technol. B 25, 1823 (2007) CrossRefGoogle Scholar
  15. 15.
    Y.R. Ryu, S. Zhu, S.W. Han, H.W. White, P.F. Miceli, H.R. Chandrasekhar, Appl. Surf. Sci. 127, 496 (1998) CrossRefADSGoogle Scholar
  16. 16.
    J.W. Park, C.M. Rouleau, D.H. Lowndes, J. Cryst. Growth 193, 516 (1998) CrossRefADSGoogle Scholar
  17. 17.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964) CrossRefADSGoogle Scholar
  18. 18.
    T.I. Kamins, R.S. Williams, D.P. Basile, T. Hasjedal, S. Harris, J. Appl. Phys. 89, 1008 (2001) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. S. Lai
    • 1
  • L. Chen
    • 1
  • X. N. Fu
    • 1
  • J. Sun
    • 1
  • Z. F. Ying
    • 1
  • J. D. Wu
    • 1
  • N. Xu
    • 1
  1. 1.Key Laboratory for Advanced Photonic Materials and Devices, Department of Optical Science and EngineeringFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations