Advertisement

Applied Physics A

, Volume 102, Issue 1, pp 201–204 | Cite as

Impact of growth temperature on the crystal habits, forms and structures of VO2 nanocrystals

  • Stefan Löffler
  • Erwin Auer
  • Matthias Weil
  • Alois LugsteinEmail author
  • Emmerich Bertagnolli
Article

Abstract

We investigated the impact of the process temperature on the habits, forms and crystal structure of VO2 nanocrystals grown by a vapor-transport method on (0001) quartz substrates. Four distinct growth regimes were discerned: orthorhombic nanowires, sheets, hemispheres, and nanowires with a monoclinic structure. The nanostructures were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). I/V characterization of individual nanowires was enabled by Ti/Au contact formation via electron beam lithography and lift-off techniques. The expected metal–insulator transition (MIT) was found in monoclinic VO2 nanowires.

Keywords

Quartz Substrate Vanadium Oxide Insulator Transition Transmission Electron Microscopy Measurement Crystal Habit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Maeng, T.-W. Kim, G. Jo, T. Lee, Mater. Res. Bull. 43(7), 1649 (2008) CrossRefGoogle Scholar
  2. 2.
    J. Sohn, H. Joo, A. Porter, C.-J. Choi, K. Kim, D. Kang, M. Welland, Nano Lett. 7(6), 1570 (2007) CrossRefADSGoogle Scholar
  3. 3.
    B. Guiton, Q. Gu, A. Prieto, M. Gudiksen, H. Park, J. Am. Chem. Soc. 127(2), 498 (2005) CrossRefGoogle Scholar
  4. 4.
    V. Eyert, Ann. Phys. 11(9), 650 (2002) zbMATHCrossRefGoogle Scholar
  5. 5.
    N.F. Mott, Rev. Mod. Phys. 40(4), 677 (1968) CrossRefADSGoogle Scholar
  6. 6.
    A. Zylbersztejn, N.F. Mott, Phys. Rev. B 11(11), 4383 (1975) CrossRefADSGoogle Scholar
  7. 7.
    B. Predel, O-V (oxygen-vanadium), in Ni–Np–Pt–Zr. Landolt–Börnstein—Group IV Physical Chemistry, vol. 5I (Springer, Berlin, 1998), pp. 1–7 Google Scholar
  8. 8.
    F.J. Morin, Phys. Rev. Lett. 3(1), 34 (1959) CrossRefADSGoogle Scholar
  9. 9.
    R. Balu, P.V. Ashrit, Appl. Phys. Lett. 92(2), 021904 (2008) CrossRefADSGoogle Scholar
  10. 10.
    C. Chen, R. Wang, L. Shang, C. Guo, Appl. Phys. Lett. 93(17), 171101 (2008) CrossRefADSGoogle Scholar
  11. 11.
    H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, Y.-S. Lim, New J. Phys. 6, 52 (2004) CrossRefADSGoogle Scholar
  12. 12.
    B.-J. Kim, Y.W. Lee, B.-G. Chae, S.J. Yun, S.-Y. Oh, Y.-S. Lim, H.-T. Kim, Appl. Phys. Lett. 90, 023515 (2007) CrossRefADSGoogle Scholar
  13. 13.
    B.-J. Kim, Y.W. Lee, S. Choi, J.-W. Lim, S.J. Yun, H.-T. Kim, T.-J. Shin, H.-S. Yun, Phys. Rev. B 77(23), 235401 (2008) CrossRefADSGoogle Scholar
  14. 14.
    S. Lysenko, A. Rua, V. Vikhnin, J. Jimenez, F. Fernandez, H. Liu, Appl. Surf. Sci. 252(15), 5512 (2006) CrossRefADSGoogle Scholar
  15. 15.
    D. Zhu, H. Liu, L. Lv, Y. Yao, W. Yang, Scr. Mater. 59(6), 642 (2008) CrossRefGoogle Scholar
  16. 16.
    A. Gies, B. Pecquenard, A. Benayad, H. Martinez, D. Gonbeau, H. Fuess, A. Levasseur, Thin Solid Films 516(21), 7271 (2008) CrossRefADSGoogle Scholar
  17. 17.
    N. Wang, Y. Cai, R. Zhang, Mater. Sci. Eng. R 60(1–6), 1 (2008) Google Scholar
  18. 18.
    Z. Dai, Z. Pan, Z. Wang, Adv. Funct. Mater. 13(1), 9 (2003) CrossRefGoogle Scholar
  19. 19.
    H. Kim, N. Kim, Appl. Phys. A 81(4), 763 (2005) CrossRefADSGoogle Scholar
  20. 20.
    X. Wen, S. Wang, Y. Ding, Z.L. Wang, S. Yang, J. Phys. Chem. B 109(1), 215 (2005) CrossRefGoogle Scholar
  21. 21.
    S. Rackauskas, A.G. Nasibulin, H. Jiang, Y. Tian, V.I. Kleshch, J. Sainio, E.D. Obraztsova, S.N. Bokova, A.N. Obraztsov, E.I. Kauppinen, Nanotechnology 20(16), 165603 (2009) CrossRefADSGoogle Scholar
  22. 22.
    X. Wu, Y. Tao, L. Dong, Z. Wang, Z. Hu, Mater. Res. Bull. 40(2), 315 (2005) CrossRefGoogle Scholar
  23. 23.
    E. Auer, A. Lugstein, S. Löffler, Y.J. Hyun, W. Brezna, E. Bertagnolli, P. Pongratz, Nanotechnology 20(43), 434017 (2009) CrossRefADSGoogle Scholar
  24. 24.
    H.T. Evans, M.E. Mrose, Am. Mineral. 40, 861 (1955) Google Scholar
  25. 25.
    G. Andersson, Acta Chem. Scand. 10, 623 (1956) CrossRefGoogle Scholar
  26. 26.
    S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, Phys. Rev. Lett. 94(2), 026404 (2005) CrossRefADSGoogle Scholar
  27. 27.
    R.M. Wentzcovitch, W.W. Schulz, P.B. Allen, Phys. Rev. Lett. 72(21), 3389 (1994) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stefan Löffler
    • 1
  • Erwin Auer
    • 1
  • Matthias Weil
    • 2
  • Alois Lugstein
    • 1
    Email author
  • Emmerich Bertagnolli
    • 1
  1. 1.Institute of Solid State ElectronicsVienna University of TechnologyWienAustria
  2. 2.Institute of Chemical Technologies and AnalyticsVienna University of TechnologyWienAustria

Personalised recommendations