Skip to main content
Log in

Fabrication of flexible photonic crystal using alumina ball inserted Teflon tube

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In our previous paper, it was found that cotton yarn/TiO2-dispersed resin photonic crystals were fabricated successfully by applying textile technology. However, it is difficult to apply for practical use because these photonic crystals cannot change their shape flexibly. In this study, we fabricate the flexible photonic crystals using high-dielectric constant fibers. The high-dielectric constant fibers were made by inserting alumina balls into Teflon tubes. The crossed linear-fiber laminated fabric and multilayered woven fabric with an fcc lattice structure were structured by aligning high-dielectric constant fibers periodically. These photonic crystals consist of air and high-dielectric constant fibers. The attenuation of transmission amplitude through the photonic crystals was measured. The photonic crystal of crossed linear-fiber laminated fabric exhibits a forbidden gap in the range from 16 to 18 GHz range. On the other hand, the photonic crystal of multilayered woven fabric, which was fabricated by the same parameter with crossed linear-fiber laminated fabric, also exhibits a forbidden gap in the range from 13 to 16 GHz range. Thus, we can successfully fabricate flexible photonic crystals of woven fabric using high-dielectric constant fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993)

    Article  ADS  Google Scholar 

  2. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature 386, 143 (1997)

    Article  ADS  Google Scholar 

  3. R. Hillebrand, W. Hergert, Solid State Commun. 115, 227 (2000)

    Article  ADS  Google Scholar 

  4. S.G. Johnson, J.D. Joannopoulos, Acta Mater. 51, 5823 (2003)

    Article  Google Scholar 

  5. S. Noda, N. Yamamoto, A. Sasaki, Jpn. J. Appl. Phys. 35, L909 (1996)

    Article  ADS  Google Scholar 

  6. N. Yamamoto, S. Noda, A. Chutinan, Jpn. J. Appl. Phys. 37, L1052 (1998)

    Article  ADS  Google Scholar 

  7. S. Kirihara, Y. Miyamoto, K. Kajiyama, J. Am. Ceram. Soc. 85, 1369 (2002)

    Article  Google Scholar 

  8. J. Arriaga, J.C. Knight, P.St.J. Russell, Physica E 17, 440 (2003)

    Article  ADS  Google Scholar 

  9. W. Belhadj, F. AbdelMalek, H. Bouchriha, Mater. Sci. Eng. C 26, 578 (2006)

    Article  Google Scholar 

  10. S. Soussi, Adv. Appl. Math. 36, 288 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Watanabe, T. Kobayashi, K. Sakoda, S. Kirihara, Y. Miyamoto, Eur. Phys. J. B 39, 295 (2004)

    Article  ADS  Google Scholar 

  12. Yu.A. Vlasov, K. Luterova, I. Pelant, B. Honerlage, V.N. Astratov, J. Cryst. Growth 184/185, 650 (1998)

    Google Scholar 

  13. S. Noda, Physica B 279, 142 (2000)

    Article  ADS  Google Scholar 

  14. H. Mori, S. Kirihara, Y. Miyamoto, J. Eur. Cer. Soc. 26, 2195 (2006)

    Article  Google Scholar 

  15. M. Salaun, M. Audier, F. Delyon, M. Duneau, J. Cryst. Growth 311, 2590 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimi Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Hotta, T. & Sato, H. Fabrication of flexible photonic crystal using alumina ball inserted Teflon tube. Appl. Phys. A 100, 981–985 (2010). https://doi.org/10.1007/s00339-010-5906-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5906-7

Keywords

Navigation