Applied Physics A

, Volume 100, Issue 2, pp 561–568 | Cite as

Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films

  • Wai-Keat LeeEmail author
  • Hin-Yong Wong
  • Kah-Yoong Chan
  • Thian-Khok Yong
  • Seong-Shan Yap
  • Teck-Yong Tou


Ruthenium (Ru) has received great interest in recent years for applications in microelectronics. Pulsed laser deposition (PLD) enables the growth of Ru thin films at low temperatures. In this paper, we report for the first time the characterization of pulsed laser deposited Ru thin films. The deposition processes were carried out at room temperature in vacuum environment for different durations with a pulsed Nd:YAG laser of 355-nm laser wavelength, employing various laser fluences ranging from 2 J/cm2 to 8 J/cm2. The effect of the laser fluence on the structural properties of the deposited Ru films was investigated using surface profilometry, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Ru droplets, some spherical in shape and some flattened into round discs were found on the deposited Ru. The droplets were correlated to ripple formations on the target during the laser-induced ejection from the target. In addition, crystalline Ru with orientations of (100), (101), and (002) was observed in the XRD spectra and their intensities were found to increase with increasing laser fluence and film thickness. Grain sizes ranging from 20 nm to 35 nm were deduced using the Scherrer formula. Optical emission spectroscopy (OES) and energy-dispersive X-ray spectroscopy (EDS) show that the composition of the plume and the deposited Ru film was of high purity.


Ruthenium Pulse Laser Deposition Atomic Layer Deposition Pulse Laser Ablation Dynamic Random Access Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.N. Ashfold, F. Claeyssens, G.M. Fuge, S.J. Henley, Pulsed laser ablation and deposition of thin films. Chem. Soc. Rev. 33(1), 9 (2004) CrossRefGoogle Scholar
  2. 2.
    D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley Interscience, New York, 1994) Google Scholar
  3. 3.
    T. Yoshitake, G. Shiraishi, K. Nagayama, Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2. Appl. Surf. Sci. 197–198, 379 (2002) CrossRefGoogle Scholar
  4. 4.
    T.N. Arunagiri, Y. Zhang, O. Chyan, M. El-Bouanani, M.J. Kim, K.H. Chen, C.T. Wu, L.C. Chen, 5 nm ruthenium thin film as a directly plateable copper diffusion barrier. Appl. Phys. Lett. 86(8), 083104 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    M.L. Green, M.E. Gross, L.E. Papa, K.J. Schnoes, D. Brasen, Chemical vapor deposition of ruthenium and ruthenium dioxide films. J. Electrochem. Soc. 132(11), 2677 (1985) CrossRefGoogle Scholar
  6. 6.
    C. Manke, S. Miedl, O. Boissiere, P.K. Baumann, J. Lindner, M. Schumacher, A. Brodyanski, M. Scheib, Atomic vapor deposition of Ru and RuO2 thin film layers for electrode applications. Microelectron. Eng. 82(3–4), 242 (2005) CrossRefGoogle Scholar
  7. 7.
    S.Y. Kang, C.S. Hwang, H.J. Kim, Improvements in growth behavior of CVD Ru films on film substrates for memory capacitor integration. J. Electrochem. Soc. 152(1), C15 (2005) CrossRefGoogle Scholar
  8. 8.
    S.Y. Kang, S.Y. No, J.H. Choi, C.S. Hwang, H.J. Kim, Pt-doped Ru films prepared by CVD as electrodes for DRAM capacitors. Electrochem. Solid-State Lett. 8(1), C12 (2005) CrossRefGoogle Scholar
  9. 9.
    J.W. Kim, S.D. Nam, S.H. Lee, S.J. Won, W.D. Kim, C.Y. Yoo, Y.W. Park, S.I. Lee, M.Y. Lee, Electrical properties of crystalline Ta2O5 with Ru electrode. Jpn. J. Appl. Phys. 39, 3 (2000) (Part 1, No. 4B) Google Scholar
  10. 10.
    W.D. Kim, J.H. Joo, Y.K. Jeong, S.J. Won, S.Y. Park, S.C. Lee, C.Y. Yoo, S.T. Kim, J.T. Moon, Development of CVD-Ru/Ta2O5/CVD-Ru capacitor with concave structure for multigigabit-scale DRAM generation, in International Electron Devices Meet, IEEE (2001) Google Scholar
  11. 11.
    S.J. Won, W.D. Kim, C.Y. Yoo, S.T. Kim, Y.W. Park, J.T. Moon, M.Y. Lee, Conformal CVD-ruthenium process for MIM capacitor in giga-bit DRAMs, in International Electron Devices Meet, IEEE (2000) Google Scholar
  12. 12.
    N. Inoue, N. Furutake, A. Toda, M. Tada, Y. Hayashi, PZT MIM capacitor with oxygen-doped Ru-electrodes for embedded FeRAM devices, in IEEE Transactions on Electron Devices, IEEE (2005) Google Scholar
  13. 13.
    J. Choi, Y. Choi, J. Hong, H. Tian, J.S. Roh, Y. Kim, T.M. Chung, Y.W. Oh, Y. Kim, C.G. Kim, K. No, Composition and electrical properties of metallic Ru thin films deposited using Ru(C6H6)(C6H8) precursor. Jpn. J. Appl. Phys. 41, 6852 (2002) (Part 1, No. 11B) ADSCrossRefGoogle Scholar
  14. 14.
    M. Tapajna, P. Pisecny, R. Luptak, K. Husekova, K. Frohlich, L. Harmatha, J.C. Hooker, F. Roozeboom, J. Jergel, Application of Ru-based gate materials for CMOS technology. Mater. Sci. Semicond. Process. 7(4–6), 271 (2004) CrossRefGoogle Scholar
  15. 15.
    H.C. Wen, P. Lysaght, H.N. Alshareef, C. Huffman, H.R. Harris, K. Choi, Y. Senzaki, H. Luan, P. Majhi, B.H. Lee, M.J. Campin, B. Foran, G.D. Lian, D.L. Kwong, Thermal response of Ru electrodes in contact with SiO2 and Hf-based high-k gate dielectrics. J. Appl. Phys. 98(4), 043520-1 (2005) ADSCrossRefGoogle Scholar
  16. 16.
    D. Josell, D. Wheeler, C. Witt, T.P. Moffat, Seedless superfill: copper electrodeposition in trenches with ruthenium barriers. Electrochem. Solid-State Lett. 6(10), C143 (2003) CrossRefGoogle Scholar
  17. 17.
    R. Chan, T.N. Arunagiri, Y. Zhang, O. Chyan, R.M. Wallace, M.J. Kim, T.Q. Hurd, Diffusion studies of copper on ruthenium thin film. Electrochem. Solid-State Lett. 7(8), G154 (2004) CrossRefGoogle Scholar
  18. 18.
    O. Chyan, T.N. Arunagiri, T. Ponnuswamy, Electrodeposition of copper thin film on ruthenium. J. Electrochem. Soc. 150(5), C347 (2003) CrossRefGoogle Scholar
  19. 19.
    K. Kawano, A. Nagai, H. Kosuge, T. Shibutami, N. Oshima, H. Funakubo, Seed layer free conformal ruthenium film deposition on hole substrates by MOCVD using (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium. Electrochem. Solid-State Lett. 9(7), C107 (2006) CrossRefGoogle Scholar
  20. 20.
    H. Kim, The application of atomic layer deposition for metallization of 65 nm and beyond. Surf. Coat. Technol. 200(10), 3104 (2006) CrossRefGoogle Scholar
  21. 21.
    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (Materials Information Society, 1990) Google Scholar
  22. 22.
    S.N. Piramanayagam, J.Z. Shi, H.B. Zhao, C.S. Mah, J.R. Shi, J.M. Zhao, J. Zhang, Y.S. Kay, Novel approaches to high-density perpendicular recording media. J. Magn. Magn. Mater. 303(2), 287 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    T.N. Arunagiri, Y. Zhang, O. Chyan, M.J. Kim, T.Q. Hurd, Interfacial diffusion studies of Cu/(5 nm Ru)/Si structures. J. Electrochem. Soc. 152(11), G808 (2005) CrossRefGoogle Scholar
  24. 24.
    J.J. Tan, X.P. Qu, Q. Xie, Y. Zhou, G.P. Ru, The properties of Ru on Ta-based barriers. Thin Solid Films. 504(1–2), 231 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    Y.S. Kim, H.I. Kim, J.H. Cho, H.K. Seo, G.S. Kim, S.G. Ansari, G. Khang, J.J. Senkevich, H.S. Shin, Electrochemical deposition of copper and ruthenium on titanium. Electrochim. Acta 51(25), 5445 (2006) CrossRefGoogle Scholar
  26. 26.
    H. Kim, Y. Kojima, H. Sato, N. Yoshii, S. Hosaka, Y. Shimogaki, Influence of crystal orientation of Ru under-layer on initial growth of copper chemical vapor deposition. Jpn. J. Appl. Phys. 45(8), 3 (2005) Google Scholar
  27. 27.
    J. Gatineau, K. Yanagita, C. Dussarrat, A new RuO4, solvent solution for pure ruthenium film depositions. Microelectron. Eng. 83(11–12), 2248 (2006) CrossRefGoogle Scholar
  28. 28.
    S. Yamada, Y. Nishibe, M. Saizaki, H. Kitajima, S. Ohtsubo, A. Morimoto, T. Shimizu, K. Ishida, Y. Masaki, Rotational honeycomb epitaxy of Ru thin films on sapphire (0001) substrate. Jpn. J. Appl. Phys. 41, 3 (2002) (Part 2, No. 2B) Google Scholar
  29. 29.
    S.R. Foltyn, R.C. Dyer, K.C. Ott, E. Peterson, K.M. Hubbard, W. Hutchinson, R.E. Muenchausen, R.C. Estler, X.D. Wu, Target modification in the excimer laser deposition of YBa2Cu3O7−X thin films. Appl. Phys. Lett. 59(5), 594 (1991) ADSCrossRefGoogle Scholar
  30. 30.
    S.R. Foltyn, R.E. Muenchausen, R.C. Estler, E. Peterson, W.B. Hutchinson, K.C. Ott, N.S. Nogar, K.M. Hubbard, R.C. Dyer, X.D. Wu, Influence of beam and target properties on the excimer laser deposition of YBa2Cu3O7−X thin films, in Symp. N, MRS Spring Meet, Material Research Society Symposium Proceedings (1990) Google Scholar
  31. 31.
    D.J. Krajnovich, J.E. Vazquez, Formation of “intrinsic” surface defects during 248 nm photoablation of polyimide. J. Appl. Phys. 73(6), 3001 (1993) ADSCrossRefGoogle Scholar
  32. 32.
    D.J. Krajnovich, J.E. Vazquez, R.J. Savoy, Impurity-driven cone formation during laser sputtering of graphite. Science 259, 3 (1993) CrossRefGoogle Scholar
  33. 33.
    M. Birnbaum, Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36(11), 3688 (1965) MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    D.C. Emmony, R.P. Howson, L.J. Willis, Laser mirror damage in germanium at 10.6 μm. Appl. Phys. Lett. 23(11), 598 (1973) ADSCrossRefGoogle Scholar
  35. 35.
    P.E. Dyer, S.D. Jenkins, J. Sidhu, Development and origin of conical structures on XeCl laser ablated polyimide. Appl. Phys. Lett. 49(8), 453 (1986) ADSCrossRefGoogle Scholar
  36. 36.
    O. Auciello, A.R. Krauss, J. Santiago-Aviles, A.F. Schreiner, D.M. Gruen, Surface compositional and topographical changes resulting from excimer laser impacting on YBa2Cu3O7 single phase superconductors. Appl. Phys. Lett. 52(3), 239 (1988) ADSCrossRefGoogle Scholar
  37. 37.
    NIST Atomic Spectra Database Google Scholar
  38. 38.
    B.D. Ngom, T. Mpahane, N. Manyala, O. Nemraoui, U. Buttner, J.B. Kana, A.Y. Fasasi, M. Maaza, A.C. Beye, Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 255(7), 4153 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    M.E. Day, M. Delfino, J.A. Fair, W. Tsai, Correlation of electrical resistivity and grain size in sputtered titanium films. Thin Solid Films 254(1–2), 285 (1995) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Wai-Keat Lee
    • 1
    Email author
  • Hin-Yong Wong
    • 1
  • Kah-Yoong Chan
    • 1
  • Thian-Khok Yong
    • 2
  • Seong-Shan Yap
    • 3
  • Teck-Yong Tou
    • 1
  1. 1.Centre for Advanced Devices and Systems (CADS), Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia
  2. 2.Faculty of Engineering and ScienceUniversiti Tunku Abdul RahmanSetapak, Kuala LumpurMalaysia
  3. 3.Institute of PhysicsNorwegian University of Science & TechnologyTrondheimNorway

Personalised recommendations