Advertisement

Applied Physics A

, Volume 100, Issue 2, pp 375–378 | Cite as

Theory of spoof plasmons in real metals

  • Anastasia Rusina
  • Maxim Durach
  • Mark I. StockmanEmail author
Article

Abstract

In this Letter we develop a theory of spoof plasmons propagating on real metals perforated with planar periodic grooves. Deviation from the spoof plasmons on perfect conductor due to finite skin depth has been analytically described. This allowed us to investigate important propagation characteristics of spoof plasmons such as quality factor and propagation length as the function of the geometrical parameters of the structure. We have also considered THz field confinement by adiabatic increase of the depth of the grooves. It is shown that the finite skin depth limits the propagation length of spoof plasmons as well as a possibility to localize THz field. Geometrical parameters of the structure are found which provide optimal guiding and localization of THz energy.

Keywords

Surface Plasmon Polaritons Propagation Length Skin Depth Corrugate Surface Perfect Conductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305(5685), 847–848 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    A.P. Hibbins, B.R. Evans, J.R. Sambles, Experimental verification of designer surface plasmons. Science 308(5722), 670–672 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    F.J. Garcia-Vidal, L. Martin-Moreno, J.B. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    F.J.G. de Abajo, J.J. Sáenz, Electromagnetic surface modes in structured perfect-conductor surfaces. Phys. Rev. Lett. 95(23), 233901 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    Z. Ruan, M. Qiu, Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface. Appl. Phys. Lett. 90(20), 201906 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    S.A. Maier, S.R. Andrews, L. Martin-Moreno, F.J. Garcia-Vidal, Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 97, 176805-1-4 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, C. Wang, Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Opt. Express 14(26), 13021–13029 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    L. Shen, X. Chen, Y. Zhongand, K. Agarwal, Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires. Phys. Rev. B 77, 075408 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    L. Shen, X. Chen, T. Yang, Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Opt. Express 16(5), 3326–3333 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    D. Martin-Cano, M.L. Nesterov, A.I. Fernandez-Dominguez, F.J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, Domino plasmons for subwavelengthterahertz circuitry. Opt. Express 18(2), 754–764 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    A. Rusina, M. Durach, K.A. Nelson, M.I. Stockman, Nanoconcentration of terahertz radiation in plasmonic waveguides. Opt. Express 16(23), 18576–18589 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    M. Born, E. Wolf, Principles of Optics (University Press, Cambridge, 1999) Google Scholar
  14. 14.
    M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, J.R.W. Alexander, C.A. Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22(7), 1099–1119 (1983) ADSCrossRefGoogle Scholar
  15. 15.
    M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404-1-4 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    C. Ropers, C.C. Neacsu, T. Elsaesser, M. Albrecht, M.B. Raschke, C. Lienau, Grating-coupling of surface plasmons onto metallic tips: a nano-confined light source. Nano Lett. 7, 2784–2788 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    E. Verhagen, M. Spasenovic, A. Polman, L. Kuipers, Nanowire plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102(20), 203904-4 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford and New York, 1984) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anastasia Rusina
    • 1
  • Maxim Durach
    • 1
  • Mark I. Stockman
    • 1
    Email author
  1. 1.Department of Physics and AstronomyGeorgia State UniversityAtlantaUSA

Personalised recommendations