Applied Physics A

, Volume 100, Issue 2, pp 359–364

Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication

  • I. Sakellari
  • A. Gaidukeviciute
  • A. Giakoumaki
  • D. Gray
  • C. Fotakis
  • M. Farsari
  • M. Vamvakaki
  • C. Reinhardt
  • A. Ovsianikov
  • B. N. Chichkov
Article

Abstract

In this work, we have synthesized and characterized a novel, titanium-containing hybrid material that can be structured three-dimensionally using two-photon polymerization. We investigate the effect on the structurability of the increase of titanium isopropoxide and methacrylic acid in this photosensitive composite. We show that while it is possible to make transparent thin films with a titanium isopropoxide molar content as high as 90%, three-dimensional structures can be made only when the titanium isopropoxide molar content is less than 50%. We measure the refractive index of films with different titanium isopropoxide: methacrylic acid concentrations and we show that while the refractive index increases linearly with the titanium isopropoxide, the increase of the methacrylic acid content does not affect the refractive index of the material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices—micromachines can be created with higher resolution using two-photon absorption. Nature 412, 697–698 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, G. von Freymann, Polarization stop bands in chiral polymeric three-dimensional photonic crystals. Adv. Mater. 19(2), 207–210 (2007) CrossRefGoogle Scholar
  4. 4.
    J. Serbin, A. Ovsianikov, B. Chichkov, Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties. Opt. Express 12(21), 5221–5228 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    H.-B. Sun, S. Kawata, Two-Photon Photopolymerization and 3D Lithographic Microfabrication (Springer, Berlin/Heidelberg, 2004) Google Scholar
  6. 6.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon, J.Q. Qin, H. Rockel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry, Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398(6722), 51–54 (1999) ADSCrossRefGoogle Scholar
  7. 7.
    K.S. Lee, R.H. Kim, D.Y. Yang, S.H. Park, Advances in 3D nano/microfabrication using two-photon initiated polymerization. Progress Polym. Sci. 33(6), 631–681 (2008) CrossRefGoogle Scholar
  8. 8.
    J.F. Xing, X.Z. Dong, W.Q. Chen, X.M. Duan, N. Takeyasu, T. Tanaka, S. Kawata, Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Appl. Phys. Lett. 90(13), 131106 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    C.R. Mendonca, D.S. Correa, T. Baldacchini, P. Tayalia, E. Mazur, Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L. Appl. Phys. A 90(4), 633–636 (2008) ADSCrossRefGoogle Scholar
  10. 10.
    H.B. Sun, T. Tanaka, K. Takada, S. Kawata, Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes. Appl. Phys. Lett. 79(10), 1411–1413 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    Z.B. Sun, X.Z. Dong, S. Nakanishi, W.Q. Chen, X.M. Duan, S. Kawata, Log-pile photonic crystal of CdS-polymer nanocomposites fabricated by combination of two-photon polymerization and in situ synthesis. Appl. Phys. A 86(4), 427–431 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    L.H. Nguyen, M. Straub, M. Gu, Acrylate-based photopolymer for two-photon microfabrication and photonic applications. Adv. Funct. Mater. 15(2), 209–216 (2005) CrossRefGoogle Scholar
  13. 13.
    Y. Jun, P. Nagpal, D.J. Norris, Thermally stable organic–inorganic hybrid photoresists for fabrication of photonic band gap structures with direct laser writing. Adv. Mater. 20, 606–610 (2008) CrossRefGoogle Scholar
  14. 14.
    R. Houbertz, L. Fröhlich, M. Popall, U. Streppel, P. Dannberg, A. Brauer, J. Serbin, B.N. Chichkov, Inorganic-organic hybrid polymers for information technology: from planar technology to 3D nanostructures. Adv. Eng. Mater. 5(8), 551–555 (2003) CrossRefGoogle Scholar
  15. 15.
    J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall, Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt. Lett. 28(5), 301–303 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    A. Doraiswamy, C. Jin, R.J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D.B. Chrisey, A. Ovsianikov, B. Chichkov, Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices. Acta Biomater. 2(3), 267–275 (2006) CrossRefGoogle Scholar
  17. 17.
    A. Ovsianikov, B. Chichkov, P. Mente, N.A. Monteiro-Riviere, A. Doraiswamy, R.J. Narayan, Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007) CrossRefGoogle Scholar
  18. 18.
    A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, L. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2(11), 2257–2262 (2008) CrossRefGoogle Scholar
  19. 19.
    J. Livage, C. Sanchez, Sol–gel chemistry. J. Non-Cryst. Solids 145, 11–19 (1992) ADSCrossRefGoogle Scholar
  20. 20.
    E. Neiss, J.-L. Rehspringer, L. Mager, A. Fort, J. Fontaine, P. Montgomery, M. Flury, S. Rober, Investigation of laser ablation on hybrid sol–gel material applied to kinoform etching. Appl. Phys. A 92, 351–356 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    M.M. Mohamed, T.M. Salama, T. Yamaguchi, Synthesis, characterization and catalytic properties of titania-silica catalysts. Colloids Surf. A 207, 25–32 (2002) CrossRefGoogle Scholar
  22. 22.
    Z. Liu, X. Quan, H.B. Fu, X.Y. Li, K. Yang, Effect of embedded-silica on microstructure and photocatalytic activity of titania prepared by ultrasound-assisted hydrolysis. Appl. Catal. B 52, 33–40 (2004) CrossRefGoogle Scholar
  23. 23.
    K. Guan, Relationship between photocatalytic activity, hydrophilicity and self-cleaning effect of TiO2/SiO2 films. Surf. Coat. Technol. 191, 155–160 (2005) CrossRefGoogle Scholar
  24. 24.
    Y. Rao, S. Chen, Molecular composites comprising TiO2 and their optical properties. Macromolecules 41(13), 4838–4844 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    S. Monneret, P. Huguet-Chantôme, F. Flory, m-lines technique: prism coupling measurement and discussion of accuracy for homogeneous waveguides. J. Opt. A 2, 188–195 (2000) ADSGoogle Scholar
  26. 26.
    P.K. Tien, G. Smolinsky, R.J. Martin, Thin organosilicon films for integrated optics. Appl. Opt. 11, 637–642 (1972) ADSCrossRefGoogle Scholar
  27. 27.
    M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B.N. Chichkov, C. Fotakis, Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore. Appl. Phys. A 93(1), 11–15 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • I. Sakellari
    • 1
    • 3
  • A. Gaidukeviciute
    • 1
    • 4
  • A. Giakoumaki
    • 1
    • 5
  • D. Gray
    • 1
  • C. Fotakis
    • 1
    • 3
  • M. Farsari
    • 1
  • M. Vamvakaki
    • 1
    • 5
  • C. Reinhardt
    • 1
    • 2
  • A. Ovsianikov
    • 2
  • B. N. Chichkov
    • 1
    • 2
  1. 1.Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology Hellas (FORTH)HeraklionGreece
  2. 2.Nanotechnology DepartmentLaser Zentrum Hannover e.V.HannoverGermany
  3. 3.Department of PhysicsUniversity of CreteHeraklionGreece
  4. 4.Leibniz Universität HannoverHannoverGermany
  5. 5.Department of Materials Science and TechnologyUniversity of CreteHeraklionGreece

Personalised recommendations