Applied Physics A

, Volume 100, Issue 2, pp 327–331

Optical vortex beams for trapping and transport of particles in air

  • V. G. Shvedov
  • A. S. Desyatnikov
  • A. V. Rode
  • Y. V. Izdebskaya
  • W. Z. Krolikowski
  • Y. S. Kivshar
Article

Abstract

In this paper we show that laser beams containing phase singularity can be used for trapping and guiding light-absorbing particles in air. The experiments were performed with agglomerates of carbon nanoparticles with the size in the range 0.1–10 μm; the typical cw laser power was of a few mW. The stability of open-air three-dimensional trapping was within ±2 μm in both the transverse and the longitudinal directions. The particle position on the beams axis within the trap can be controlled by changing the relative intensity of two beams. The distinguishing feature of the trapping strategy is that particles are trapped at the intensity minimum of the beam, thus with minimum heating and intervention into the particle properties, which is important for direct studies of particle properties and for air-trapping of living cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    D.G. Grier, Nature 424, 810 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    K. Dholakia, P. Reece, M. Gu, Chem. Soc. Rev. 37, 42 (2008) CrossRefGoogle Scholar
  4. 4.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970) ADSCrossRefGoogle Scholar
  5. 5.
    J. Morris, A. Carruthers, M. Mazilu, P. Reece, T. Cizmar, K. Dholakia, Opt. Express 16(14), 10117 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    G. Roosen, C. Imbert, Phys. Lett. A 59, 6 (1976) ADSCrossRefGoogle Scholar
  7. 7.
    H. Rubinsztein-Dunlop, T. Nieminen, M. Friese, N. Heckenberg, Adv. Quantum Chem. 30, 469 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    R. Omori, T. Kobayashi, A. Suzuki, Opt. Lett. 22, 816 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    N. Magome, M.I. Kohira, E. Hayata, S. Mukai, K. Yoshikawa, J. Phys. Chem. B 107, 3988 (2003) CrossRefGoogle Scholar
  10. 10.
    R.J. Hopkins, L. Mitchem, A.D. Ward, J.P. Reid, Phys. Chem. Chem. Phys. 6, 4924 (2004) CrossRefGoogle Scholar
  11. 11.
    D. McGloin, D.R. Burnham, M.D. Summers, D. Rudd, N. Dewar, S. Anand, Faraday Discuss. 137, 335 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    M. Lewittes, S. Arnold, G. Oster, Appl. Phys. Lett. 40, 455 (1982) ADSCrossRefGoogle Scholar
  13. 13.
    J.F. Nye, M.V. Berry, Proc. R. Soc. Lond. A 336, 165 (1974) MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    M.S. Soskin, M.V. Vasnetsov, Prog. Opt. 42, 219 (2001) CrossRefGoogle Scholar
  15. 15.
    V.G. Shvedov, A.S. Desyatnikov, A.V. Rode, W.Z. Krolikowski, Yu.S. Kivshar, Opt. Express 17, 5743 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Desyatnikov, V.G. Shvedov, A.V. Rode, W.Z. Krolikowski, Y.S. Kivshar, Opt. Express 17, 8201 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    C.N. Alexeyev, M.A. Yavorsky, V.G. Shvedov, J. Opt. Soc. Am. B 25, 643 (2008) MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    E.G. Gamaly, A.V. Rode, Encyclopedia of Nanoscience and Nanotechnology, vol. 7 (American Scientific, Stevenson Range, 2004), 783 pp Google Scholar
  19. 19.
    A.V. Rode, E.G. Gamaly, B. Luther-Davies, Appl. Phys. A 70, 135 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    B. Luther-Davies, V.Z. Kolev, M.J. Lederer, N.R. Madsen, A.V. Rode, J. Giesekus, K.-M. Du, Duering, Appl. Phys. A 79, 1051 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    A.V. Rode, S.T. Hyde, E.G. Gamaly, R.G. Elliman, D.R. McKenzie, S. Bulcock, Appl. Phys. A 69, S755 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    A.V. Rode, R.G. Elliman, E.G. Gamaly, A.I. Veinger, A.G. Christy, S.T. Hyde, B. Luther-Davies, Appl. Surf. Sci. 197–198, 644–649 (2002) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • V. G. Shvedov
    • 1
    • 2
    • 3
  • A. S. Desyatnikov
    • 1
  • A. V. Rode
    • 3
  • Y. V. Izdebskaya
    • 1
    • 2
  • W. Z. Krolikowski
    • 3
  • Y. S. Kivshar
    • 1
  1. 1.Nonlinear Physics Center, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia
  2. 2.Department of PhysicsTaurida National UniversitySimferopolUkraine
  3. 3.Laser Physics Center, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations