Advertisement

Applied Physics A

, Volume 100, Issue 2, pp 511–516 | Cite as

EUV micropatterning for biocompatibility control of PET

  • B. Reisinger
  • M. Fahrner
  • I. Frischauf
  • S. Yakunin
  • V. Svorcik
  • H. Fiedorowicz
  • A. Bartnik
  • C. Romanin
  • J. Heitz
Article

Abstract

We have investigated the influence of oriented microstructures at modified polyethylene terephthalate (PET) on the adhesion and alignment of Chinese hamster ovary (CHO) cells. For surface modification, the PET foils were exposed to the radiation of a laser-plasma extreme ultraviolet (EUV) source based on a double-stream gas-puff target. The emission of the plasma was focused onto the samples by means of a gold-plated ellipsoidal collector. The spectrum of the focused radiation covered the wavelength range from 9 to 70 nm. The PET samples were irradiated with the EUV pulses at a repetition rate of 10 Hz in a high vacuum. For control experiments, PET samples were also irradiated in air with the light of a 193 nm ArF-excimer laser. Different kinds of surface microstructures were obtained depending on the EUV or laser fluence and pulse number, including oriented wall- and ripple-type structures with lateral structure periods of a few µm. The surface morphology of polymer samples after the irradiation was investigated using a scanning electron microscope (SEM). Changes in chemical surface structure of the irradiated samples were investigated using X-ray photoelectron spectroscopy (XPS). We demonstrated that the cells show good adhesion and align along oriented wall- and ripple-type microstructures on PET surfaces produced by the EUV irradiation.

Keywords

Chinese Hamster Ovary Cell Pulse Number Image Processing Software ImageJ Phase Contrast Microscope Image Oriented Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D.W. Wilkinson, R.O.C. Oreffo, Nat. Mater. 6, 997 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    J.Y. Lim, H.J. Donahue, Tissue Eng. 13, 1879 (2007) CrossRefGoogle Scholar
  3. 3.
    R. Mikulikova, S. Moritz, T. Gumpenberger, M. Olbrich, C. Romanin, L. Bacakova, V. Svorcik, J. Heitz, Biomaterials 26, 5572–5580 (2005) CrossRefGoogle Scholar
  4. 4.
    R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealey, Biomaterials 20, 573 (1999) CrossRefGoogle Scholar
  5. 5.
    E. Martinez, E. Engel, J.A. Planell, J. Samitier, Ann. Anat./Anat. Anz. 191, 126 (2009) CrossRefGoogle Scholar
  6. 6.
    S. Fujita, M. Ohshima, H. Iwata, J. R. Soc. Interface 6, S269 (2009) CrossRefGoogle Scholar
  7. 7.
    F.C.M.J.M. van Delft, F.C. van den Heuvel, W.A. Loesberg, J. te Riet, P. Schön, C.G. Figdor, S. Speller, J.J.W.A. van Loon, X.F. Walboomers, J.A. Jansen, Microelectron. Eng. 85, 1362 (2008) CrossRefGoogle Scholar
  8. 8.
    B. Wojciak-Stothard, A. Curtis, W. Monaghan, K. Macdonald, C. Wilkinson, Exp. Cell Res. 223, 426 (1996) CrossRefGoogle Scholar
  9. 9.
    B. Zhu, Q. Zhang, Q. Lu, Y. Xu, J. Yin, J. Hu, Z. Wang, Biomaterials 25, 4215 (2004) CrossRefGoogle Scholar
  10. 10.
    S.A. Biela, Y. Su, J.P. Spatz, R. Kemkemer, Acta Biomater. 5, 2460 (2009) CrossRefGoogle Scholar
  11. 11.
    R. Kemkemer, S. Jungbauer, D. Kaufmann, H. Gruler, Biophys. J. 90, 4701 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    M.T. Lam, S. Sim, X. Zhu, S. Takayama, Biomaterials 27, 4340 (2006) CrossRefGoogle Scholar
  13. 13.
    A.I. Teixeira, P.F. Nealey, C.J. Murphy, J. Biomed. Mater. Res. A 71, 369 (2004) CrossRefGoogle Scholar
  14. 14.
    W.-B. Tsai, J.-H. Lin, Acta Biomater. 5, 1442 (2009) CrossRefGoogle Scholar
  15. 15.
    E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, J. Heitz, Biomaterials 29, 1796 (2008) CrossRefGoogle Scholar
  16. 16.
    A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, R. Rakowski, A. Szczurek, M. Szczurek, Acta Phys. Pol. A 117, 384 (2010) -390 Google Scholar
  17. 17.
    A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, A. Szczurek, M. Szczurek, Appl. Phys. B 96, 727 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    G. Beamson, D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database (Wiley, Chichester, 1992) Google Scholar
  19. 19.
    http://rsb.info.nih.gov/ij. Accessed Apr. 23, 2010
  20. 20.
    E. Arenholz, V. Svorcik, T. Kefer, J. Heitz, D. Bäuerle, Appl. Phys. A 53, 330 (1991) ADSCrossRefGoogle Scholar
  21. 21.
    J. Heitz, E. Arenholz, D. Bäuerle, R. Sauerbrey, H.M. Phillips, Appl. Phys. A 59, 289 (1994) ADSCrossRefGoogle Scholar
  22. 22.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Berlin, 1996) Google Scholar
  23. 23.
    E. Arenholz, M. Wagner, J. Heitz, D. Bäuerle, Appl. Phys. A 55, 119 (1992) ADSCrossRefGoogle Scholar
  24. 24.
    A. Bartnik, H. Fiedorowicz, R. Jarocki, J. Kostecki, M. Szczurek, A. Bilinski, O. Chernyayeva, J.W. Sobczak, Appl. Phys. A (2010, in print). doi: 10.1007/s00339-010-5596-1
  25. 25.
    N. Bityurin, E. Arenholz, N. Arnold, D. Bäuerle, Phys. Rev. E 75, 041603 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    V. Kotal, V. Svorcik, P. Slepicka, P. Sajdl, O. Blahova, P. Sutta, V. Hnatowicz, Plasma Proc. Polym. 4, 69 (2007) CrossRefGoogle Scholar
  27. 27.
    R. Mikulikova, S. Moritz, T. Gumpenberger, M. Olbrich, J. Heitz, C. Romanin, L. Bacakova, V. Svorcik, Biomaterials 26, 5572 (2005) CrossRefGoogle Scholar
  28. 28.
    A.G. Kidane, G. Punshon, H.J. Salacinski, B. Ramesh, A. Dooley, M. Olbrich, J. Heitz, G. Hamilton, A.M. Seifalian, J. Biomed. Mater. Res. A 79, 606 (2006) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. Reisinger
    • 1
  • M. Fahrner
    • 2
  • I. Frischauf
    • 2
  • S. Yakunin
    • 1
  • V. Svorcik
    • 3
  • H. Fiedorowicz
    • 4
  • A. Bartnik
    • 4
  • C. Romanin
    • 2
  • J. Heitz
    • 1
  1. 1.Institute of Applied PhysicsJohannes Kepler University LinzLinzAustria
  2. 2.Institute of BiophysicsJohannes Kepler University LinzLinzAustria
  3. 3.Institute of Chemical TechnologyPragueCzech Republic
  4. 4.Institute of OptoelectronicsMilitary University of TechnologyWarsawPoland

Personalised recommendations