Applied Physics A

, Volume 101, Issue 2, pp 255–258 | Cite as

Formation of cavitation-induced pits on target surface in liquid-phase laser ablation



It is well known that a crater is formed on the target surface by the irradiation of intense laser pulses in laser ablation. In this work, we report that additional pits are formed on the bottom surface of the ablation crater due to the collapse of a cavitation bubble in liquid-phase laser ablation. We observed the formation of several cavitation-induced pits when the fluence of the laser pulse used for ablation was approximately 5 J/cm2. The number of cavitation-induced pits decreased with the laser fluence, and we observed one or two cavitation-induced pits when the laser fluence was higher than 10 J/cm2. In addition, we examined the influence of the liquid temperature on the formation of cavitation-induced pits. The collapse of the cavitation bubble was not observed when the liquid temperature was close to the boiling temperature, and in this case, we found no cavitation-induced pits on the bottom surface of the ablation crater. This experimental result was discussed by considering the cavitation parameter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Sakka, K. Saito, Y.H. Ogata, Appl. Surf. Sci. 197–198, 246 (2002) CrossRefGoogle Scholar
  2. 2.
    H. Ushida, N. Takada, K. Sasaki, J. Phys. Conf. Ser. 59, 563 (2007) CrossRefADSGoogle Scholar
  3. 3.
    R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990) CrossRefADSGoogle Scholar
  4. 4.
    T. Tsuji, Y. Tsuboi, N. Kitamura, M. Tsuji, Appl. Surf. Sci. 229, 365 (2004) CrossRefADSGoogle Scholar
  5. 5.
    H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, Y. Kawaguchi, A. Yabe, J. Photchem. Photobiol. A 158, 179 (2003) CrossRefGoogle Scholar
  6. 6.
    K. Sasaki, T. Nakano, W. Soliman, N. Takada, Appl. Phys. Express. 2, 046501 (2009) CrossRefADSGoogle Scholar
  7. 7.
    A. Vogel, W. Lauterborn, R. Timm, J. Fluid Mech. 206, 299 (1989) CrossRefADSGoogle Scholar
  8. 8.
    E.A. Brujan, K. Nahen, P. Schmidt, A. Vogel, J. Fluid Mech. 433, 251 (2001) MATHADSGoogle Scholar
  9. 9.
    A. Philipp, W. Lauterborn, J. Fluid Mech. 361, 75 (1998) MATHCrossRefADSGoogle Scholar
  10. 10.
    Y. Tomita, A. Shima, J. Fluid Mech. 169, 535 (1986) CrossRefADSGoogle Scholar
  11. 11.
    N. Takada, T. Sasaki, K. Sasaki, Appl. Phys. A 93, 833 (2008) CrossRefADSGoogle Scholar
  12. 12.
    A. Vogel, S. Busch, U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996) CrossRefADSGoogle Scholar
  13. 13.
    N. Takada, H. Ushida, K. Sasaki, J. Phys. Conf. Ser. 59, 40 (2007) CrossRefADSGoogle Scholar
  14. 14.
    Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, J. Appl. Phys. 88, 5993 (2000) CrossRefADSGoogle Scholar
  15. 15.
    I.W. Florschuetz, B.T. Chao, Trans. ASME, Ser. C, J. Heat Transf. 87, 209 (1965) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceNagoya UniversityFuro-cho, Chikusa-ku, NagoyaJapan
  2. 2.Division of Quantum Science and EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations