Advertisement

Applied Physics A

, Volume 101, Issue 2, pp 231–235 | Cite as

Development of a time-resolved white-light interference microscope for optical phase measurements during fs-laser material processing

  • Alexander Horn
  • Dirk Wortmann
  • Andreas Brand
  • Ilya Mingareev
Open Access
Article
  • 452 Downloads

Abstract

A modified Mach–Zehnder interferometer set-up combined with microscope objectives has been developed for the measurement of phase changes in the processed material sample, like modification and melting of glass. The white light is generated by focusing ultrafast laser radiation (t p=80 fs) in a sapphire crystal using a micro-lens array to minimize temporal and spatial fluctuations in the white-light continuum. Lateral and coaxial pump-probe measurements of the phase changes during material processing are performed using two coupled ultrafast laser sources at different repetition rates (f rep=1 Hz–1 MHz). The optical phase shift and therefore the refractive index of the material are calculated from the interference images using two approaches. The knowledge of the refractive index during the laser processing with a temporal resolution in the ps-range and a spatial resolution of several microns leads to a better understanding of the initial processes for the permanent material modifications.

Keywords

Femtosecond Laser Optical Path Difference Ultrafast Laser Femtosecond Laser Radiation Ultra Short Laser Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Russbueldt, T. Mans, G. Rotarius, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Opt. Express 17(15), 12230–12245 (2009) CrossRefADSGoogle Scholar
  2. 2.
    I.H. Chowdhury, A.Q. Wu, X. Xu, A.M. Weiner, Appl. Phys. A 81, 1627–1632 (2005) CrossRefADSGoogle Scholar
  3. 3.
    S.M. Eaton, H. Zhang, J. Li M.L. Ng, W.J. Chen, S. Ho, P.R. Herman, Opt. Express 16, 9443–9458 (2008) CrossRefADSGoogle Scholar
  4. 4.
    K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996) CrossRefADSGoogle Scholar
  5. 5.
    A. Mermillod-Blondin, J. Bonse, A. Rosenfeld, I.V. Hertel, Yu.P. Meshcheryakov, N.M. Bulgakova, E. Audouard, R. Stoian, Appl. Phys. Lett. 94, 041911 (2009) CrossRefADSGoogle Scholar
  6. 6.
    V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, D. von der Linde, Phys. Rev. Lett. 97, 237403 (2006) CrossRefADSGoogle Scholar
  7. 7.
    A. Brodeur, S.L. Chin, J. Opt. Soc. Am. B 16(4), 637–650 (1999) CrossRefADSGoogle Scholar
  8. 8.
    H. Beyer, Theorie und Praxis der Interferenzmikroskopie (Akademische Verlagsgesellschaft Geest und Portig, Leipzig, 1974) Google Scholar
  9. 9.
    P. de Groot, X.C. de Lega, J. Kramer, M. Turzhitsky, Appl. Opt. 41, 4571–4578 (2002) CrossRefADSGoogle Scholar
  10. 10.
    A. Horn, I. Mingareev, J. Gottmann, A. Werth, U. Brenk, Meas. Sci. Technol. 19, 015302 (2008) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Alexander Horn
    • 1
  • Dirk Wortmann
    • 2
  • Andreas Brand
    • 2
  • Ilya Mingareev
    • 2
    • 3
  1. 1.Institut für Physikalische Chemie IGeorg-August Universität GöttingenGöttingenGermany
  2. 2.Lehrstuhl für LasertechnikRWTH Aachen UniversityAachenGermany
  3. 3.Townes Laser InstituteUniversity of Central FloridaOrlandoUSA

Personalised recommendations