Applied Physics A

, Volume 100, Issue 1, pp 287–296 | Cite as

Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

  • I. Zardo
  • S. Conesa-Boj
  • S. Estradé
  • L. Yu
  • F. Peiro
  • P. Roca i Cabarrocas
  • J. R. Morante
  • J. Arbiol
  • A. Fontcuberta i Morral
Article

Abstract

Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the <111>, <112> or <001> growth direction. When growing on the <112> and <111> directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm−1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Cui, C.M. Lieber, Science 291, 851 (2001) CrossRefADSGoogle Scholar
  2. 2.
    M.T. Bjork, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, Appl. Phys. Lett. 80, 1058 (2002) CrossRefADSGoogle Scholar
  3. 3.
    S. Neusser, D. Grundler, Adv. Mater. 21, 2917 (2009) CrossRefGoogle Scholar
  4. 4.
    S. De Franceschi, J.A. van Dam, E.P.A.M. Bakkers, L.F. Feiner, L. Gurevich, L.P. Kouwenhoven, Appl. Phys. Lett. 83, 344 (2003) CrossRefADSGoogle Scholar
  5. 5.
    E.D. Minot, F. Kelkensberg, M. van Kouwen, J.A. van Dam, L.P. Kouwenhoven, V. Zwiller, M.T. Borgstrom, O. Wunnicke, M.A. Verheijen, E.P.A.M. Bakkers, Nano Lett. 7, 367 (2007) CrossRefADSGoogle Scholar
  6. 6.
    S. Thunich, L. Prechtel, D. Spirkoska, G. Abstreiter, A. Fontcuberta i Morral, A.W. Holleitner, Appl. Phys. Lett. 95, 083111 (2009) CrossRefADSGoogle Scholar
  7. 7.
    C. Colombo, M. Heiß, M. Graetzel, A. Fontcuberta i Morral, Appl. Phys. Lett. 94, 173108 (2009) CrossRefADSGoogle Scholar
  8. 8.
    W. Lu, J. Xiang, B.P. Timko, Y. Wu, C.M. Lieber, Proc. Natl. Acad. Sci. 102, 10046 (2005) CrossRefADSGoogle Scholar
  9. 9.
    J. Knoch, W. Riess, J. Appenzeller, IEEE Trans. Electron Devices 29, 372 (2008) CrossRefGoogle Scholar
  10. 10.
    X. Zhao, C.M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett. 92, 236805 (2004) CrossRefADSGoogle Scholar
  11. 11.
    L. Cao, J.S. White, J.S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009) CrossRefADSGoogle Scholar
  12. 12.
    R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964) CrossRefADSGoogle Scholar
  13. 13.
    E.I. Givarzigov, J. Cryst. Growth 31, 20 (1975) CrossRefADSGoogle Scholar
  14. 14.
    D.W. Kwak, H.Y. Cho, W.C. Yang, Physica E 37, 153 (2007) CrossRefADSGoogle Scholar
  15. 15.
    Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell, C.M. Lieber, Nano Lett. 4, 433 (2004) CrossRefADSGoogle Scholar
  16. 16.
    V. Schmidt, S. Senz, U. Gösele, Nano Lett. 5, 931 (2005) CrossRefADSGoogle Scholar
  17. 17.
    F.M. Ross, J. Tersoff, M.C. Reuter, Phys. Rev. Lett. 95, 146104 (2005) CrossRefADSGoogle Scholar
  18. 18.
    Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, C.M. Lieber, Appl. Phys. Lett. 78, 2214 (2001) CrossRefADSGoogle Scholar
  19. 19.
    T. Kamins, Semiconductor nanowires for electronics and sensors, in WE-Heraeus Semin. Semiconducting Nanowires: Physics, Materials and Devices, vol. 397 (Wilhelm und Else Heraus-Stiftung, Bad Honnef, 2007) Google Scholar
  20. 20.
    T.I. Kamins, R.S. Williams, Y. Chen, Y.L. Chang, Y.A. Chang, Appl. Phys. Lett. 76, 562 (2000) CrossRefADSGoogle Scholar
  21. 21.
    V. Schmidt, J.V. Wittemann, S. Senz, U. Goesele, Adv. Mater. 21, 2681 (2009) CrossRefGoogle Scholar
  22. 22.
    J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, L.J. Lauhon, J. Mater. Chem. 19, 849 (2009) CrossRefGoogle Scholar
  23. 23.
    L. Yu, P.J. Alet, G. Picardi, I. Maurin, P.R.I. Cabarrocas, Nanotechnology 19, 485605 (2008) CrossRefGoogle Scholar
  24. 24.
    Y.W. Wang, V. Schmidt, S. Senz, U. Goesele, Nat. Nanotechnol. 1, 186 (2006) CrossRefADSGoogle Scholar
  25. 25.
    C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008) CrossRefADSGoogle Scholar
  26. 26.
    I. Zardo, L. Yu, S. Conesa-Boj, S. Estrade, P.J. Alet, J. Simon, M. Frimmer, P. Roca i Cabarrocas, F. Peiro, J. Arbiol, J.R. Morante, A. Fontcuberta i Morral, Nanotechnology 20, 155602 (2009) CrossRefADSGoogle Scholar
  27. 27.
    Y. Xiang, L. Cao, S. Conesa-Boj, S. Estrade, J. Arbiol, F. Peiro, M. Heiß, I. Zardo, J.R. Morante, M.L. Brongersma, A. Fontcuberta i Morral, Nanotechnology 20, 245608 (2009) CrossRefADSGoogle Scholar
  28. 28.
    Y. Xiang, L. Cao, J. Arbiol, M.L. Brongersma, A. Fontcuberta i Morral, Appl. Phys. Lett. 94, 163101 (2009) CrossRefADSGoogle Scholar
  29. 29.
    F. Iacopi, P.M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. Richard, C. Detavernier, H. Griffiths, Nanotechnology 18, 505307 (2007) CrossRefGoogle Scholar
  30. 30.
    V. Schmidt, J.V. Wittemann, U. Goesele, Chem. Rev 110, 361 (2010) CrossRefGoogle Scholar
  31. 31.
    D.E. Perea, J.L. Lensch, S.J. May, B.W. Wessels, L.J. Lauhon, Appl. Phys. A 85, 271 (2006) CrossRefADSGoogle Scholar
  32. 32.
    J.E. Allen, E.R. Memesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, Nat. Nanotechnol. 3, 168 (2008) CrossRefADSGoogle Scholar
  33. 33.
    S.H. Oh, K. van Benthem, S.I. Molina, A.Y. Borisevich, W. Luo, P. Werner, N.D. Zakharov, D. Kumar, S.T. Pantelides, S.J. Pennycook, Nano Lett 8, 1016 (2008) CrossRefADSGoogle Scholar
  34. 34.
    J. Arbiol, B. Kalache, P. Roca i Cabarrocas, J.R. Morante, A. Fontcuberta i Morral, Nanotechnology 18, 305606 (2007) CrossRefGoogle Scholar
  35. 35.
    J. Arbiol, A. Fontcuberta i Morral, S. Estrade, F. Peiro, B. Kalache, P. Roca i Cabarrocas, J.R. Morante, J. Appl. Phys. 104, 064312 (2008) CrossRefADSGoogle Scholar
  36. 36.
    M.C. Putnam, M.A. Filler, B.M. Kayes, M.D. Kelzenberg, Y. Guan, N.S. Lewis, J.M. Eiler, H.A. Atwater, Nano Lett. 8, 3109 (2008) CrossRefADSGoogle Scholar
  37. 37.
    A.R. Guichard, D.N. Barsic, S. Sharma, T.I. Kamins, M.L. Brongersma, Nano Lett. 6, 2140 (2006) CrossRefADSGoogle Scholar
  38. 38.
    O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile, N. Magnea, Nano Lett. 9(7), 2575 (2009) CrossRefADSGoogle Scholar
  39. 39.
    E.A.G. Hamers, A. Fontcuberta i Morral, C. Niikura, R. Brenot, P. Roca i Cabarrocas, J. Appl. Phys. 88, 3674 (2000) CrossRefADSGoogle Scholar
  40. 40.
    S. Luidold, H. Antrekowitsch, JOM 59(6), 20 (2007) CrossRefGoogle Scholar
  41. 41.
    B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, N.S. Lewis, H.A. Atwater, Appl. Phys. Lett. 91, 103110 (2007) CrossRefADSGoogle Scholar
  42. 42.
    J.B. Hannon, S. Kodambaka, F.M. Ross, R.M. Tromp, Nature 440, 69 (2006) CrossRefADSGoogle Scholar
  43. 43.
    B. Kalache, P. Roca i Cabarrocas, A. Fontcuberta i Morral, Jpn. J. Appl. Phys. 45, 190 (2006) CrossRefADSGoogle Scholar
  44. 44.
    G.A. Bootsma, H.J. Gassen, J. Cryst. Growth 10, 223 (1971) CrossRefADSGoogle Scholar
  45. 45.
    J. Kikkawa, Y. Ohno, S. Takeda, Appl. Phys. Lett. 86, 123109 (2005) CrossRefADSGoogle Scholar
  46. 46.
    A.I. Hochbaum, R. Fan, R.R. He, P.D. Yang, Nano Lett. 5, 457 (2005) CrossRefADSGoogle Scholar
  47. 47.
    M.C. Putnam, M.A. Filler, B.M. Kayes, M.D. Kelzenberg, Y.B. Guan, N.S. Lewis, J.M. Eiler, H.A. Atwater, Nano Lett. 8, 3109 (2008) CrossRefADSGoogle Scholar
  48. 48.
    T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele, Adv. Mater. 19, 917 (2007) CrossRefGoogle Scholar
  49. 49.
    Z.P. Huang, X.X. Zhang, M. Reiche, L.F. Liu, W. Lee, T. Shimizu, S. Senz, U. Gosele, Nano Lett. 8, 3046 (2008) CrossRefADSGoogle Scholar
  50. 50.
    A.H. Carim, K.K. Lew, J.M. Redwing, Adv. Mater. 13, 1490 (2001) CrossRefGoogle Scholar
  51. 51.
    F.J. Lopez, E.R. Hemesath, L.J. Lauhon, Nano Lett. 9, 2774 (2009) CrossRefADSGoogle Scholar
  52. 52.
    S. Conesa-Boj, I. Zardo, S. Estrade, L. Wei, P.J. Alet, P. Roca i Cabarrocas, J.R. Morante, F. Peiro, A. Fontcuberta i Morral, J. Arbiol, Cryst. Growth Des. 10, 1534 (2010) CrossRefGoogle Scholar
  53. 53.
    C. Cayron, M. Den Hertog, L. Lattu-Romain, C. Mouchet, C. Secouard, J.L. Rouviere, J.P. Simonato, J. Appl. Crystallogr. 42, 242 (2009) CrossRefGoogle Scholar
  54. 54.
    J. Arbiol, S. Estradé, J.D. Prades, A. Cirera, F. Furtmayr, C. Stark, A. Laufer, M. Stutzmann, M. Eickhoff, M.H. Gass, A.L. Bleloch, F. Peiró, J.R. Morante, Nanotechnology 20, 145704 (2009) CrossRefADSGoogle Scholar
  55. 55.
    J. Arbiol, A. Fontcuberta i Morral, S. Estrade, F. Peiro, B. Kalache, P. Roca i Cabarrocas, J.R. Morante, J. Appl. Phys 104, 064312 (2008) CrossRefADSGoogle Scholar
  56. 56.
    I. Zardo, S. Conesa-Boj, F. Peiro, J.R. Morante, J. Arbiol, E. Uccelli, G. Abstreiter, A. Fontcuberta i Morral, Phys. Rev. B 80, 245324 (2009) CrossRefADSGoogle Scholar
  57. 57.
    A. Fontcuberta i Morral, J. Arbiol, J.D. Prades, A. Cirera, J.R. Morante, Adv. Mater 19, 1347 (2007) CrossRefGoogle Scholar
  58. 58.
    J.D. Prades, A. Cirera, J. Arbiol, J.R. Morante, A. Fontcuberta i Morral, Appl. Phys. Lett. 91, 123107 (2007) CrossRefADSGoogle Scholar
  59. 59.
    D.W. Feldman, J.H. Parker, W.J. Choyke, L. Patrick, Phys. Rev. 173, 787 (1968) CrossRefADSGoogle Scholar
  60. 60.
    T. Livneh, J.P. Zhang, G.S. Cheng, M. Moskovits, Phys. Rev. B 74, 035320 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • I. Zardo
    • 1
  • S. Conesa-Boj
    • 2
  • S. Estradé
    • 2
  • L. Yu
    • 3
  • F. Peiro
    • 2
  • P. Roca i Cabarrocas
    • 3
  • J. R. Morante
    • 2
    • 5
  • J. Arbiol
    • 2
    • 4
  • A. Fontcuberta i Morral
    • 1
    • 6
  1. 1.Walter Schottky Institut and Physik DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Departament d’ElectrònicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.LPICMEcole Polytechnique, CNRSPalaiseauFrance
  4. 4.Institucio Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Ciència de Materials de Barcelona, CSICBellaterraSpain
  5. 5.Catalonia Institute for Energy ResearchBarcelonaSpain
  6. 6.Laboratoire des Matériaux Semiconducteurs, Institut des MatériauxEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations