Skip to main content
Log in

Vapor–liquid–solid growth and narrow-band ultraviolet photoluminescence of well-aligned GeO2 nanowire arrays with controllable aspect ratios

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

GeO2 nanowire arrays have been fabricated by thermal evaporation of Ge powder in air via a vapor–liquid–solid mechanism with Au as a catalyst. The GeO2 nanowires are single crystalline with a hexagonal structure and have a controllable aspect ratio in the range of 23–167. The controllable synthesis of GeO2 nanowire arrays with different aspect ratios was achieved by adjusting the heating temperature and time. Photoluminescence spectra of the GeO2 nanowire arrays were measured at room temperature, and two ultraviolet emission peaks at 347 and 364 nm are observed for the first time, which indicates that the GeO2 nanowire arrays may have potential applications in nanoscale photonic and electronic devices. Moreover, this vapor–liquid–solid growth process may be employed for synthesis of the highly oriented nanowire arrays of other oxides, and provides opportunities for both fundamental research and technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.Z. Tian, T.J. Kempa, C.M. Lieber, Chem. Soc. Rev. 38, 16–24 (2009)

    Article  Google Scholar 

  2. Z.L. Wang, J. Nanosci. Nanotechnol. 8, 27–55 (2008)

    Article  Google Scholar 

  3. D.J. Gargas, M.E. Toimil-Molares, P.D. Yang, J. Am. Chem. Soc. 131, 2125–2127 (2009)

    Article  Google Scholar 

  4. Y.H. Tang, Y.F. Zhang, N. Wang, I. Bello, C.S. Lee, S.T. Lee, Appl. Phys. Lett. 74, 3824–3826 (1999)

    Article  ADS  Google Scholar 

  5. P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, M.S. Khil, D.R. Lee, E.-K. Suh, J. Chem. Phys. 121, 441–445 (2004)

    Article  ADS  Google Scholar 

  6. X.C. Wu, W.H. Song, B. Zhao, Y.P. Sun, J. Du, J. Chem. Phys. Lett. 349, 210–214 (2001)

    Article  ADS  Google Scholar 

  7. M. Zacharias, P.M. Fauchet, J. Non-Cryst. Solids 227, 1058–1062 (1998)

    Article  ADS  Google Scholar 

  8. B.Z. Gai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Chem. Phys. Lett. 303, 311–314 (1999)

    Article  Google Scholar 

  9. Y.J. Zhang, J. Zhu, Q. Zhang, Y.J. Yan, N.L. Wang, X.Z. Zhang, Chem. Phys. Lett. 317, 504–509 (2000)

    Article  ADS  Google Scholar 

  10. Z. Jiang, T. Xie, G.Z. Wang, X.Y. Yuan, G.W. Meng, L.D. Zhang, Mater. Lett. 59, 416–419 (2005)

    Article  Google Scholar 

  11. P. Hidalgo, B. Mendez, J. Piqueras, J. Nanotechnol. 16, 2521–2524 (2005)

    Article  ADS  Google Scholar 

  12. H.P. Wu, J.F. Liu, M.Y. Ge, L. Niu, Y.W. Zeng, Y.W. Wang, Chem. Mater. 18, 1817–1820 (2006)

    Article  Google Scholar 

  13. M. Adachi, N. Keizo, K. Sago, Y. Murata, Y. Nishikawa, Chem. Commum. 2381–2383 (2005)

  14. Z.J. Gu, F. Liu, J.Y. Howe, M.P. Paranthaman, Z.W. Pan, Cryst. Growth Des. 9, 35–39 (2009)

    Article  Google Scholar 

  15. X.B. Chen, H.Q. Yang, R.G. Zhang, R.L. Yang, H.X. Dong, W.Y. Yi, Sci. China E 38, 24–35 (2008) (in chinese)

    MATH  Google Scholar 

  16. J.Q. Hu, Q. Li, X.M. Meng, C.S. Lee, C.S. Lee, Adv. Mater. 14, 1396–1399 (2002)

    Article  Google Scholar 

  17. P. Hidalgo, B. Mendez, J. Piqueras, J. Nanotechnol. 18, 155203 (2007)

    Article  ADS  Google Scholar 

  18. M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, P.D. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  19. P. Nguyen, H.T. Ng, T. Yamada, M.K. Smith, J. Li, J. Han, Nano Lett. 4, 651–657 (2004)

    Article  ADS  Google Scholar 

  20. Z.L. Wang, J.H. Song, Science 312, 242–246 (2006)

    Article  ADS  Google Scholar 

  21. D. Benjamin, P.D. Yang, J. Am. Chem. Soc. 131, 3756–3761 (2009)

    Article  Google Scholar 

  22. S. Tsutomu, S.L. Jun, J. Phys. Soc. Jpn. 67, 3809–3815 (1998)

    Article  Google Scholar 

  23. B.B. Li, D.P. Yu, S.L. Zhang, Phys. Rev. B 59, 1645 (1999)

    Article  ADS  Google Scholar 

  24. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330–1333 (2001)

    Article  Google Scholar 

  25. X.F. Duan, C.M. Lieber, Adv. Mater. 12, 298–302 (2000)

    Article  Google Scholar 

  26. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947–1949 (2001)

    Article  ADS  Google Scholar 

  27. X.C. Wu, J.M. Hoong, Z.J. Han, Y.R. Tao, Chem. Phys. Lett. 373, 28–32 (2003)

    Article  ADS  Google Scholar 

  28. D.M. Christie, J.R. Chelikowsky, Phys. Rev. B 62, 14703–14711 (2000)

    Article  ADS  Google Scholar 

  29. P. Jiang, J.J. Zhou, H.F. Fang, C.Y. Wang, Z.L. Wang, Adv. Funct. Mater. 17, 1303–1310 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heqing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Yang, H., Shi, R. et al. Vapor–liquid–solid growth and narrow-band ultraviolet photoluminescence of well-aligned GeO2 nanowire arrays with controllable aspect ratios. Appl. Phys. A 100, 493–499 (2010). https://doi.org/10.1007/s00339-010-5789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5789-7

Keywords

Navigation