Applied Physics A

, Volume 101, Issue 1, pp 19–25 | Cite as

Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation

  • B. RethfeldEmail author
  • O. Brenk
  • N. Medvedev
  • H. Krutsch
  • D. H. H. Hoffmann


We calculate the transient free-electron density in laser-irradiated dielectrics with two different approaches, both considering the energy distribution of excited electrons. The kinetic approach solves a system of complete Boltzmann collision integrals describing different excitation and relaxation processes in detail. The multiple rate equation (MRE) is an approximative way to keep track of the energy distribution of excited electrons with reduced numerical effort. Both methods are applied to trace dielectric breakdown, considering the changing optical parameters during irradiation with a high-intensity laser pulse. In the MRE approach we include also fast recombination, leading to a delay of the increase of the electronic density and to a decrease of the maximum number of free electrons.


Femtosecond Laser Pulse Kinetic Approach Dielectric Breakdown Threshold Behavior Recombination Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 53(4), 1749–1761 (1996) CrossRefADSGoogle Scholar
  2. 2.
    M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, G. Mourou, Ch. Spielmann, W. Kautek, F. Krausz, Femtosecond optical breakdown in dielectrics. Phys. Rev. Lett. 80(18), 4076 (1998) CrossRefADSGoogle Scholar
  3. 3.
    A.C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82(19), 3883 (1999) CrossRefADSGoogle Scholar
  4. 4.
    A.P. Joglekar, H. Liu, G.J. Spooner, E. Meyhoefer, G. Mourou, A.J. Hunt, A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining. Appl. Phys. B 77, 25 (2003) CrossRefGoogle Scholar
  5. 5.
    M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, Scaling laws of femtosecond laser pulse induced breakdown in oxide films. Phys. Rev. B 71, 115109 (2005) CrossRefADSGoogle Scholar
  6. 6.
    D. von der Linde, H. Schüler, Breakdown threshold and plasma formation in femtosecond laser-solid interaction. J. Opt. Soc. Am. B 13(1), 216–222 (1996) CrossRefADSGoogle Scholar
  7. 7.
    F. Quere, S. Guizard, Ph. Martin, Time-resolved study of laser-induced breakdown in dielectrics. Europhys. Lett. 56, 138 (2001) CrossRefADSGoogle Scholar
  8. 8.
    S.S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Dynamics of femtosecond laser interactions with dielectrics. Appl. Phys. A 79, 1695–1709 (2004) CrossRefADSGoogle Scholar
  9. 9.
    A. Couairon, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys. Rev. B 71, 125435 (2005) CrossRefADSGoogle Scholar
  10. 10.
    A. Kaiser, B. Rethfeld, M. Vicanek, G. Simon, Microscopical processes in dielectrics absorbing a subpicosecond laser pulse. Phys. Rev. B 61(17), 11437–11450 (2000) CrossRefADSGoogle Scholar
  11. 11.
    B. Rethfeld, Unified model for the free-electron avalanche in laser-irradiated dielectrics. Phys. Rev. Lett. 92, 187401 (2004) CrossRefADSGoogle Scholar
  12. 12.
    B. Rethfeld, Free-electron generation in laser-irradiated dielectrics. Phys. Rev. B 73, 035101 (2006) CrossRefADSGoogle Scholar
  13. 13.
    B.H. Christensen, P. Balling, Modeling ultrashort-pulse laser ablation of dielectric materials. Phys. Rev. B 79, 155424 (2009) CrossRefADSGoogle Scholar
  14. 14.
    L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, C. Sarpe-Tudoran, T. Baumert, Control of ionization processes in high band gap materials via tailored femtosecond pulses. Opt. Express 15, 17855 (2007) CrossRefADSGoogle Scholar
  15. 15.
    L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, T. Baumert, Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale. Appl. Phys. A 92, 749 (2008) CrossRefADSGoogle Scholar
  16. 16.
    A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015 (2005) CrossRefADSGoogle Scholar
  17. 17.
    S.C. Jones, P. Bräunlich, R.T. Casper, X.-A. Shen, P. Kelly, Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials. Opt. Eng. 28, 1039–1068 (1989) ADSGoogle Scholar
  18. 18.
    H. Krutsch, Wechselwirkung intensiver Strahlen mit dielektrischer Materie, Diploma Thesis. Technical University of Darmstadt, Germany, 2008 (in German) Google Scholar
  19. 19.
    B. Rethfeld, H. Krutsch, D.H.H. Hoffmann, Tracing laser-induced dielectric breakdown in solids. Contrib. Plasma Phys. 50(1), 16–20 (2010) CrossRefADSGoogle Scholar
  20. 20.
    B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (2002) CrossRefADSGoogle Scholar
  21. 21.
    K. Sokolowski-Tinten, D. von der Linde, Generation of dense electron-hole plasmas in silicon. Phys. Rev. B 61, 2643 (2000) CrossRefADSGoogle Scholar
  22. 22.
    D. Hulin, M. Combescot, J. Bok, A. Migus, J.Y. Vinet, A. Antonetti, Energy transfer during silicon irradiation by femtosecond laser pulse. Phys. Rev. Lett. 52(22), 1998–2001 (1984) CrossRefADSGoogle Scholar
  23. 23.
    P. Audebert, Ph. Daguzan, A. Dos Santos, J.C. Gauthier, J.P. Geindre, S. Guizard, G. Hamoniaux, K. Krastev, P. Martin, G. Petite, A. Antonetti, Space-time observation of an electron gas in SiO2. Phys. Rev. Lett. 73(14), 1990–1993 (1994) CrossRefADSGoogle Scholar
  24. 24.
    F. Quere, P. Grua, H. Bercegol, P. Martin, J.P. Morreeuw, J.L. Rullier, Interaction of an intense laser field with a dielectric containing metallic nanoparticles. Appl. Phys. B 78, 825–828 (2004) CrossRefADSGoogle Scholar
  25. 25.
    M. Li, S. Menon, J.P. Nibarger, G.N. Gibson, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 82, 2394–2397 (1999) CrossRefADSGoogle Scholar
  26. 26.
    G. Petite, S. Guizard, P. Martin, F. Quere, Comment on ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 83, 5182 (1999) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • B. Rethfeld
    • 1
    Email author
  • O. Brenk
    • 1
  • N. Medvedev
    • 1
  • H. Krutsch
    • 2
  • D. H. H. Hoffmann
    • 2
  1. 1.Department of Physics and OPTIMAS Research CenterUniversity KaiserslauternKaiserslauternGermany
  2. 2.Institute for Nuclear PhysicsUniversity DarmstadtDarmstadtGermany

Personalised recommendations