Applied Physics A

, Volume 101, Issue 1, pp 127–131 | Cite as

In situ observation of cell-detachment process initiated by femtosecond laser-induced stress wave

  • Yasuyo Maezawa
  • Yoichiroh Hosokawa
  • Kazunori Okano
  • Mie Matsubara
  • Hiroshi Masuhara
Article

Abstract

When a stress wave generated by focusing a femtosecond laser is loaded on an animal cell adhered on a substrate, the cell is detached from the substrate. There are two possible mechanisms for the cell detachment: (a) The cell is detached from a scaffold coated on a glass plate, and (b) the cell is detached from the glass plate with the scaffold. In this work, we have studied the cell-detachment mechanism by visualizing the scaffold with a fluorescence probe of quantum dots. When the cell was detached from the substrate, fluorescence from the scaffold simultaneously disappeared from the glass plate, although the scaffold was not irradiated by the laser. This indicates that detachment due to the stress wave is attributed to mechanism (a). On the other hand, when the cell was detached from the substrate by a trypsin treatment, the fluorescence from the scaffold remained, suggesting mechanism (b). By comparing both results, it is considered that physiological damage of the cell membrane during the detachment process by femtosecond laser-induced stress wave is less than that due to the trypsin treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Vogel, J. Noack, G. Hüttman, G. Paltauf, Appl. Phys. B 81, 1015 (2005) CrossRefADSGoogle Scholar
  2. 2.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003) CrossRefGoogle Scholar
  3. 3.
    Y. Jiang, Y. Matsumoto, Y. Hosokawa, H. Masuhara, I. Oh, Appl. Phys. Lett. 90, 061107 (2007) CrossRefADSGoogle Scholar
  4. 4.
    Y. Hosokawa, H. Takabayashi, S. Miura, C. Shukunami, Y. Hiraki, H. Masuhara, Appl. Phys. A 79(4–6), 795 (2004) ADSGoogle Scholar
  5. 5.
    Y. Hosokawa, T. Kaji, C. Shukunami, Y. Hiraki, E. Kotani, H. Mori, H. Masuhara, Biomed. Microdev. 9(2), 105 (2007) CrossRefGoogle Scholar
  6. 6.
    T. Kaji, S. Ito, H. Miyasaka, Y. Hosokawa, H. Masuhara, C. Shukunami, Y. Hiraki, Appl. Phys. Lett. 91(2), 3 (2007) CrossRefGoogle Scholar
  7. 7.
    C. Hosokawa, S.N. Kudoh, A. Kiyohara, Y. Hosokawa, K. Okano, H. Masuhara, T. Taguchi, Appl. Phys. A 93, 57 (2008) CrossRefADSGoogle Scholar
  8. 8.
    A. Ashkin, J.M. Dziedzic, T. Yamane, Nature 330, 769 (1987) CrossRefADSGoogle Scholar
  9. 9.
    Y. Hosokawa, H. Masuhara, Y. Matsumoto, S. Sato, Proc. SPIE 4622, 138 (2002) CrossRefADSGoogle Scholar
  10. 10.
    L. Weiss, Exp. Cell Res. 30(3), 509 (1963) CrossRefGoogle Scholar
  11. 11.
    G.C. Easty, D.M. Easty, E.J. Ambrose, Exp. Cell Res. 19, 539 (1960) CrossRefGoogle Scholar
  12. 12.
    N. Takizawa, K. Okano, T. Uwada, Y. Hosokawa, H. Masuhara, Proc. SPIE 6854, 685411 (2008) CrossRefGoogle Scholar
  13. 13.
    L.A. Greene, A.S. Tischler, Proc. Natl. Acad. Sci. USA 73(7), 2424 (1976) CrossRefADSGoogle Scholar
  14. 14.
    K.R. Rau, A. Guerra III, A. Vogel, V. Venugopalan, Appl. Phys. Lett. 84, 2940 (2004) CrossRefADSGoogle Scholar
  15. 15.
    K.R. Rau, P.A. Quinto-Su, A.N. Hellman, V. Venugopalan, Biophys. J. 91(1), 317 (2006) CrossRefADSGoogle Scholar
  16. 16.
    Y.-E. Kuo, C.-C. Wu, Y. Hosokawa, Y. Maezawa, K. Okano, H. Masuhara, F.-J. Kao, Appl. Phys. A (2010, accepted) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yasuyo Maezawa
    • 1
  • Yoichiroh Hosokawa
    • 1
  • Kazunori Okano
    • 1
    • 2
  • Mie Matsubara
    • 1
  • Hiroshi Masuhara
    • 1
    • 3
  1. 1.Graduate School of Materials ScienceNara Institute of Science and TechnologyIkomaJapan
  2. 2.Kansei Fukushi Research CenterTohoku Fukushi UniversitySendaiJapan
  3. 3.Department of Applied Chemistry and Institute of Molecular ScienceNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations