Applied Physics A

, Volume 101, Issue 1, pp 97–101 | Cite as

Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates

  • Jeppe Byskov-Nielsen
  • Juha-Matti Savolainen
  • Martin Snogdahl Christensen
  • Peter Balling
Article

Abstract

In this paper we present femtosecond laser ablation studies of the metals copper, silver and tungsten. Measurements of the threshold fluence determined from the hole diameters versus fluence provide incubation coefficients of the three materials, which are found to be equal within one standard deviation. Furthermore, we have determined the single-shot threshold fluences to be 1.7±0.3 J/cm2, 1.5±0.4 J/cm2 and 0.44±0.02 J/cm2 for copper, silver and tungsten, respectively. These are in good agreement with theoretical values calculated neglecting heat diffusion.

The ablation rates in the regimes of high and low fluence have been examined. In the low-fluence regime, a logarithmic dependence has been found, while the high-fluence data are consistent with a linear dependence. A comparison of the high-fluence data with an approximate analytical solution provides the effective absorptance of the samples, i.e. the fraction of the laser energy that is contributing to the ablation process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Balling, B.H. Christensen, J. Byskov-Nielsen, D.Q.S. Le, in Laser-based Micro- and Nano-packaging and Assembly II, ed. by W. Pfleging et al., vol. 6880 (SPIE, Bellingham, 2008), p. 68800C Google Scholar
  2. 2.
    K. Vestentoft, P. Balling, Appl. Phys. A 84, 207 (2006) CrossRefADSGoogle Scholar
  3. 3.
    B.H. Christensen, K. Vestentoft, P. Balling, Appl. Surf. Sci. 253, 6347 (2007) CrossRefADSGoogle Scholar
  4. 4.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, Appl. Surf. Sci. 233, 275 (2004) CrossRefADSGoogle Scholar
  5. 5.
    S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997) CrossRefADSGoogle Scholar
  6. 6.
    E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985) Google Scholar
  7. 7.
    J.M. Liu, Opt. Lett. 7, 196 (1982) CrossRefADSGoogle Scholar
  8. 8.
    Y. Jee, M.F. Becker, R.M. Walser, J. Opt. Soc. Am. B 5, 648 (1988) CrossRefADSGoogle Scholar
  9. 9.
    S.E. Kirkwood, A.C. Van Popta, Y.Y. Tsui, R. Fedosejevs, Appl. Phys. A 81, 729 (2005) CrossRefADSGoogle Scholar
  10. 10.
    C.S. Nielsen, P. Balling, J. Appl. Phys. 99, 093101 (2006) CrossRefADSGoogle Scholar
  11. 11.
    J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Chem. Phys. 251, 237 (2000) CrossRefGoogle Scholar
  12. 12.
    A.Y. Vorobyev, V.S. Makin, C. Guo, Phys. Rev. Lett. 102, 234301 (2009) CrossRefADSGoogle Scholar
  13. 13.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Sov. Phys. JETP 39, 375 (1974) ADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jeppe Byskov-Nielsen
    • 1
  • Juha-Matti Savolainen
    • 1
  • Martin Snogdahl Christensen
    • 1
  • Peter Balling
    • 1
  1. 1.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations