Applied Physics A

, Volume 101, Issue 1, pp 77–80 | Cite as

Molecular dynamics simulations of laser induced surface melting in orthorhombic Al13Co4

  • S. Sonntag
  • J. Roth
  • H.-R. Trebin


Laser induced surface melting of the aluminum–cobalt alloy Al13Co4 is investigated. For the simulations of the lattice ions we use molecular dynamics, while for the time evolution of the electron temperature a generalized heat-conduction equation is solved. Energy transfer between the sub-systems is allowed by an electron–phonon coupling term. This combined treatment of the electronic and atomic systems is an extension of the well-known two-temperature model [Anisimov et al. in JETP Lett. 39(2), 1974]. The alloy shows large structural affinity to decagonal quasicrystals, which have an in-plane five-fold symmetry,while in perpendicular direction the planes are stacked periodically. As a consequence we observe slight anisotropic melting behavior.


Hybrid Simulation Melting Depth Crystal Direction Thermal Transport Property Decagonal Quasicrystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Dolinšek, Private communication Google Scholar
  2. 2.
    M. Mihalkovič, Private communication Google Scholar
  3. 3.
    P.B. Allen, Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59(13), 1460–1463 (1987) CrossRefADSGoogle Scholar
  4. 4.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultra short laser pulses. JETP Lett. 39(2) (1974) Google Scholar
  5. 5.
    D.N. Basov, T. Timusk, F. Barakat, J. Greedan, B. Grushko, Anisotropic optical conductivity of decagonal quasicrystals. Phys. Rev. Lett. 72(12), 1937–1940 (1994) CrossRefADSGoogle Scholar
  6. 6.
    M. Bonn, D.N. Denzler, S. Funk, M. Wolf, S.-S. Wellershoff, J. Hohlfeld, Ultrafast electron dynamics at metal surfaces: competition between electron–phonon coupling and hot-electron transport. Phys. Rev. B 61(2), 1101–1105 (2000) CrossRefADSGoogle Scholar
  7. 7.
    P. Brommer, F. Gähler, Effective potentials for quasicrystals from ab-initio data. Philos. Mag. 86(6), 753–758 (2006) CrossRefADSGoogle Scholar
  8. 8.
    M.A. Chernikov, Elastic properties of icosahedral and decagonal quasicrystals. Phys. Usp. 48(4), 411–417 (2005) CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    M.S. Daw, M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984) CrossRefADSGoogle Scholar
  10. 10.
    Z. Dian-lin, L. Li, W. Xue-mei, L. Shu-yuan, L.X. He, K.H. Kuo, Hall effect in a single two-dimensional quasicrystal: Al62Si3Cu20Co15. Phys. Rev. B 41(12), 8557–8559 (1990) CrossRefADSGoogle Scholar
  11. 11.
    J. Dolinšek, M. Komelj, P. Jeglič, S. Vrtnik, D. Stanić, P. Popčević, J. Ivkov, A. Smontara, Z. Jagličić, P. Gille, Y. Grin, Anisotropic magnetic and transport properties of orthorhombic Al13Co4. Phys. Rev. B, Condens. Matter Mater. Phys. 79(18), 184201 (2009) ADSGoogle Scholar
  12. 12.
    P. Gille, B. Bauer, Single crystal growth of Al13Co4 and Al13Fe4 from Al-rich solutions by the Czochralski method. Cryst. Res. Technol. 43(1), 1161–1167 (2008) CrossRefGoogle Scholar
  13. 13.
    J. Grin, U. Burkhardt, M. Ellner, K. Peters, Crystal structure of orthorhombic Al13Co4. J. Alloys Compd. 206(2), 243–247 (1994) CrossRefGoogle Scholar
  14. 14.
    P. Gumbsch, S.J. Zhou, B.L. Holian, Molecular dynamics investigation of dynamic crack stability. Phys. Rev. B 55(6), 3445–3455 (1997) CrossRefADSGoogle Scholar
  15. 15.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68(6), 064114 (2003) CrossRefADSGoogle Scholar
  16. 16.
    A.B. Kaiser, Electron–phonon enhancement of thermopower: application to metallic glasses. Phys. Rev. B 29(12), 7088–7091 (1984) CrossRefADSGoogle Scholar
  17. 17.
    S. Martin, A.F. Hebard, A.R. Kortan, F.A. Thiel, Transport properties of Al65Cu15Co20 and Al70Ni15Co15 decagonal quasicrystals. Phys. Rev. Lett. 67(6), 719–722 (1991) CrossRefADSGoogle Scholar
  18. 18.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in C: the art of scientific computing, 2nd edn. (Academic Press, Cambridge, 1992) Google Scholar
  19. 19.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Metal ablation by picosecond laser pulses: a hybrid simulation. Phys. Rev. B 66(11), 115404 (2002) CrossRefADSGoogle Scholar
  20. 20.
    D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53(20), 1951–1953 (1984) CrossRefADSGoogle Scholar
  21. 21.
    L. Shu-yuan, W. Xue-mei, L. Li, Z. Dian-lin, L.X. He, K.X. Kuo, Anisotropic transport properties of a stable two-dimensional quasicrystal: Al62Si3Cu20Co15. Phys. Rev. B 41(13), 9625–9627 (1990) CrossRefADSGoogle Scholar
  22. 22.
    A. Smontara, I. Smiljanić, J. Ivkov, D. Stanić, O.S. Barišić, Z. Jagličić, P. Gille, M. Komelj, P. Jeglič, M. Bobnar, J. Dolinšek, Anisotropic magnetic, electrical, and thermal transport properties of the y-Al–Ni–Co decagonal approximant. Phys. Rev. B, Condens. Matter Mater. Phys. 78(10), 104204 (2008) ADSGoogle Scholar
  23. 23.
    S. Sonntag, J. Roth, F. Gaehler, H.-R. Trebin, Femtosecond laser ablation of aluminium. Appl. Surf. Sci. 255(24), 9742–9744 (2009) CrossRefADSGoogle Scholar
  24. 24.
    J. Stadler, R. Mikulla, H.-R. Trebin, IMD: a software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8(5), 1131–1140 (1997). CrossRefADSGoogle Scholar
  25. 25.
    Y. Vekilov, E. Isaev, B. Johansson, Does the Wiedemann-Franz law work for quasicrystals? Phys. Lett. A 352(6), 524–525 (2006) CrossRefADSzbMATHGoogle Scholar
  26. 26.
    Z.G. Wang, C. Dufour, E. Paumier, M. Toulemonde, The sensitivity of metals under swift-heavy-ion irradiation: a transient thermal process. J. Phys., Condens. Matter 6(34), 6733–6750 (1994) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute for Theoretical and Applied PhysicsUniversity of StuttgartStuttgartGermany

Personalised recommendations