Applied Physics A

, Volume 101, Issue 1, pp 215–224 | Cite as

Model properties relevant to laser ablation of moderately absorbing polymers

  • S. Lazare
  • I. Elaboudi
  • M. Castillejo
  • A. Sionkowska
Article

Abstract

A set of polymers including biopolymers and polymers from renewable resources are studied, with attention paid to their capability to form a foamy surface layer by laser irradiation. A model of laser-induced pressure wave is discussed, with its tensile tail giving rise to a fast and dense nucleation of cavities that can expand to microbubbles when filled with ablation gas. The intensity of the pressure wave has a maximum for an absorption coefficient of ∼1000 cm−1. Polyvinyl acetate, studied as a prototype polymer experimentally and by modeling, allows discussing the role of the viscosity drop in the dynamics of the laser-induced cavitations. In the Zeldovich frequency factor, a T (temperature) and P (pressure) dependent model of viscosity, and a T-dependent model of surface tension are introduced. It is further suggested that the well-known free-volume nanoholes existing in the material before the irradiation can constitute the nuclei of importance and that their concentration is one of the factors controlling the pre-exponential factor in the nucleation rate law.

Nomenclature

α

absorption coefficient

la=α−1

laser absorption depth

cs

speed of sound in the polymer

Cp

heat capacity of the polymer

ρ

density of the polymer

F(t)

instantaneous fluence

g(t)

normalized time profile of laser pulse

τ

pulse width

τ0

pulse width parameter in g(t)

F0

total fluence for a ns pulse

f0

fluence of a “Dirac” or fs laser pulse

αcsτ<1

pressure confinement condition

t

time

z

depth

J(t,z)

nucleation rate

σ

surface tension of the material

Z

Zeldovich frequency factor

n0

molecular density factor

v

volume of a free volume hole in PVAc

J0=Zn0

pre-exponential factor

Pi

pressure inside

Po

pressure outside the nucleating bubbles

Pv

vapor pressure inside bubbles

T(z,t)

temperature at depth z and time t

Tc

critical temperature of the polymer

T0

ambient temperature

Tmax 

maximum surface temperature

A0

target absorptivity

Γ

Grüneisen constant

Rs=−1

surface reflection coefficient of sound

po(z,t)

pressure for a fs pulse (ultrashort)

Po(z,t)

pressure for a ns pulse (long)

p1(z,t),p2(z,t) and p3(z,t)

pressure of the 3 superimposed subwaves

δT,δP,TR,PR

parameters of the Avramov model

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.M. White, J. Appl. Phys. 34, 3559 (1963) CrossRefADSGoogle Scholar
  2. 2.
    E.F. Carome, N.A. Clark, C.E. Moeller, Appl. Phys. Lett. 4, 95 (1964) CrossRefADSGoogle Scholar
  3. 3.
    J.C. Bushnell, D.J. McCloskey, J. Appl. Phys. 39, 5541 (1968) CrossRefADSGoogle Scholar
  4. 4.
    M. Terzic, M.W. Sigrist, J. Appl. Phys. 56, 93 (1984) CrossRefADSGoogle Scholar
  5. 5.
    M.W. Sigrist, J. Appl. Phys. 60, R83 (1986) CrossRefADSGoogle Scholar
  6. 6.
    A.C. Tam, Rev. Mod. Phys. 58, 381 (1986) CrossRefADSGoogle Scholar
  7. 7.
    V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (AIP, New York, 1993) Google Scholar
  8. 8.
    S. Lazare, R. Bonneau, S. Gaspard, M. Castillejo, A. Sionkowska, Appl. Phys. A 94, 719 (2009) CrossRefADSGoogle Scholar
  9. 9.
    B. Steverding, J. Phys. D, Appl. Phys. 4, 787 (1971) CrossRefADSGoogle Scholar
  10. 10.
    F.W. Cross, R.K. Al-Dahir, P.E. Dyer, A.J. MacRobert, Appl. Phys. Lett. 50, 1019 (1987) CrossRefADSGoogle Scholar
  11. 11.
    R.S. Dingus, R.J. Scammon, Proc. SPIE 1427, 45 (1991) CrossRefADSGoogle Scholar
  12. 12.
    G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487 (2003) CrossRefGoogle Scholar
  13. 13.
    G. Paltauf, H. Schmidt-Kloiber, Appl. Phys. A 62, 303 (1996) CrossRefADSGoogle Scholar
  14. 14.
    E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004) ADSGoogle Scholar
  15. 15.
    F. Vidal, T.W. Johnson, J.-C. Kiefer, F. Martin, Phys. Rev. B 70, 184125 (2004) CrossRefADSGoogle Scholar
  16. 16.
    N. Inogamov, V. Zhakhovskii, S.I. Ashitkov, Yu.V. Petrov, M.B. Agranat, S.I. Anisimov, K. Nishihara, V. Fortov, J. Exp. Theor. Phys. 107, 1 (2008) CrossRefADSGoogle Scholar
  17. 17.
    F.W. Cross, R.K. Al-Dhahir, P.E. Dyer, J. Appl. Phys. 64, 2194 (1988) CrossRefADSGoogle Scholar
  18. 18.
    I. Itzkan, D. Albagli, M.L. Perelman, C. Von Rosenberg, M.S. Feld, Proc. Natl. Aad. Sci. USA 92, 1960 (1995) CrossRefADSGoogle Scholar
  19. 19.
    A. Vogel, V. Venugopalan, Chem. Rev. 103, 577 (2003) CrossRefGoogle Scholar
  20. 20.
    A.A. Oraevsky, S.L. Jacques, F.K. Tittel, J. Appl. Phys. 78, 1281 (1995) CrossRefADSGoogle Scholar
  21. 21.
    D. Kim, M. Ye, C.P. Grigoropoulos, Appl. Phys. A 67, 169 (1998) CrossRefADSGoogle Scholar
  22. 22.
    W.O. Wray, T. Aida, R.B. Dyer, Appl. Phys. B 74, 57 (2002) CrossRefADSGoogle Scholar
  23. 23.
    J. Hobley, Y. Kuge, S. Gorelik, M. Kasuya, K. Hatanaka, S. Kajimoto, H. Fukumura, Phys. Chem. Chem. Phys. 10, 5256 (2008) CrossRefGoogle Scholar
  24. 24.
    S. Lazare, V. Tokarev, A. Sionkowska, M. Wisniewski, Appl. Phys. A 81, 465 (2005) CrossRefADSGoogle Scholar
  25. 25.
    A. Sionkowska, H. Kaczmarek, M. Wisniewski, J. Skopinska, S. Lazare, V. Tokarev, Surf. Sci. 600, 3775 (2006) CrossRefADSGoogle Scholar
  26. 26.
    S. Lazare, V. Tokarev, A. Sionkowska, M. Wisniewski, J. Phys. Conf. Ser. 59, 546 (2007) ADSGoogle Scholar
  27. 27.
    M. Wisniewski, A. Sionkowska, H. Kaczmarek, J. Skopinska, S. Lazare, V. Tokarev, Int. J. Photoenergy 2006, 1–7 (2006) CrossRefGoogle Scholar
  28. 28.
    M. Wisniewski, A. Sionkowska, H. Kaczmarek, J. Skopinska, P. Chevallier, D. Mantovani, S. Lazare, V. Tokarev, Appl. Surf. Sci. 253, 1970 (2006) CrossRefADSGoogle Scholar
  29. 29.
    M. Wisniewski, A. Sionkowska, H. Kaczmarek, S. Lazare, V. Tokarev, Polymery 52, 259 (2007) and 52, 571 (2007) Google Scholar
  30. 30.
    A. Sionkowska, M. Wisniewski, S. Lazare, J. Lopez, M.-C. Hernandez, F. Guillemot, M.-C. Durrieu, Mol. Cryst. Liq. Cryst. 486, 250 (2007) CrossRefGoogle Scholar
  31. 31.
    S. Gaspard, M. Oujja, R. DeNalda, C. Abrusci, F. Catalina, L. Banares, S. Lazare, M. Castillejo, Appl. Surf. Sci. 254, 1179 (2007) CrossRefADSGoogle Scholar
  32. 32.
    S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, M. Castillejo, Phys. Chem. Chem. Phys. 10, 6174 (2008) CrossRefGoogle Scholar
  33. 33.
    M. Wisniewski, A. Sionkowska, H. Kaczmarek, S. Lazare, V. Tokarev, C. Belin, J. Photochem. Photobiol. 188, 192 (2007) CrossRefGoogle Scholar
  34. 34.
    S. Gaspard, M. Oujja, C. Abrusci, F. Catalina, S. Lazare, J.P. Desvergne, M. Castillejo, Photochem. Photobiol. 193, 187 (2008) CrossRefGoogle Scholar
  35. 35.
    E. Rebollar, G. Bounos, A. Selimis, M. Castillejo, S. Georgiou, Appl. Phys. A 92, 1043 (2008) CrossRefADSGoogle Scholar
  36. 36.
    T. Efthimiopoulos, C. Kiagias, G. Heliotis, E. Helidonis, Can. J. Phys. 78, 509 (2000) CrossRefADSGoogle Scholar
  37. 37.
    F. Weisbuch, V. Tokarev, S. Lazare, C. Belin, J.-L. Bruneel, Appl. Phys. A 75, 677 (2002) CrossRefADSGoogle Scholar
  38. 38.
    V. Tokarev, S. Lazare, C. Belin, D. Débarre, Appl. Phys. A 79, 717 (2004) CrossRefADSGoogle Scholar
  39. 39.
    E. Rebollar, G. Bounos, M. Oujja, C. Domingo, S. Georgiou, M. Castillejo, Appl. Surf. Sci. 248, 254 (2005) CrossRefADSGoogle Scholar
  40. 40.
    S. Gaspard, M. Oujja, R. de Nalda, M. Castillejo, L. Bañares, S. Lazare, R. Bonneau, Appl. Phys. A 93, 209 (2008) CrossRefADSGoogle Scholar
  41. 41.
    S. Lazare, R. Bonneau, S. Gaspard, M. Castillejo, A. Sionkowska, J. Laser Micro/Nanoeng. 41(3) (2009). www.jlps.gr.jp/jlmn/index.php
  42. 42.
    E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945) CrossRefADSGoogle Scholar
  43. 43.
    G. Carri, R. Simha, J. Colloid Interface Sci. 178, 483 (1996) CrossRefGoogle Scholar
  44. 44.
    R. Jain, R. Simha, J. Colloid Interface Sci. 216, 424 (1999) CrossRefGoogle Scholar
  45. 45.
    S. Wu, in Polymer Interface and Adhesion (Dekker, New York, 1982) Google Scholar
  46. 46.
    R. Digilov, J. Cryst. Growth 249, 363 (2003) CrossRefADSGoogle Scholar
  47. 47.
    J. Zeldovich, J. Exp. Theor. Phys. 12, 525 (1942) Google Scholar
  48. 48.
    V.G. Baidakov, Explosive Boiling of Superheated Cryogenic Liquids (Wiley/VCH, Berlin, 2007) CrossRefGoogle Scholar
  49. 49.
    I. Avramov, A. Milchev, J. Non-Cryst. Solids 104, 253 (1988) CrossRefADSGoogle Scholar
  50. 50.
    I. Avramov, A. Grzybowski, M. Paluch, J. Non-Cryst. Solids 355, 733 (2009) CrossRefADSGoogle Scholar
  51. 51.
    C.M. Roland, R. Casalini, Macromolecules 36, 1361 (2003) CrossRefADSGoogle Scholar
  52. 52.
    I. Avramov, J. Non-Cryst. Solids 351, 3163 (2005) CrossRefADSGoogle Scholar
  53. 53.
    M. Williams, R. Landel, D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955) CrossRefGoogle Scholar
  54. 54.
    C.A. Angell, J. Non-Cryst. Solids 73, 1 (1985) CrossRefADSGoogle Scholar
  55. 55.
    J.E. McKinney, H.V. Belcher, J. Res. Natl. Bur. Stand. A, Phys. Chem. 67, 43 (1963) Google Scholar
  56. 56.
    J.H. Wendorf, E.W. Fisher, Z. Koloid, Z. Polymer 251, 876 (1973) Google Scholar
  57. 57.
    S.J. Tao, J. Chem. Phys. 56, 5499 (1971) CrossRefADSGoogle Scholar
  58. 58.
    G. Dlübek, T. Lüpke, J. Stejny, M. Alam, M. Arnold, Macromolecules 33, 990 (2000) CrossRefADSGoogle Scholar
  59. 59.
    H.-L. Lv, B.-G. Wang, J.-C. Yang, Desalinisation 234, 33 (2008) CrossRefGoogle Scholar
  60. 60.
    Yu.P. Yampolskii, Russ. Chem. Rev. 76, 59 (2007) CrossRefADSGoogle Scholar
  61. 61.
    T. Miyamoto, K. Shibayama, J. Appl. Phys. 44, 5372 (1973) CrossRefADSGoogle Scholar
  62. 62.
    R. Simha, T. Somcynski, Macromolecules 2, 342 (1969) CrossRefADSGoogle Scholar
  63. 63.
    L. Utracki, R. Simha, Makromol. Theory Simul. 10, 17 (2001) CrossRefGoogle Scholar
  64. 64.
    M.H. Cohen, D. Turnbull, J. Chem. Phys. 31, 1164 (1959) CrossRefADSGoogle Scholar
  65. 65.
    J.D. Ferry, Viscoelasticity of Polymers (Wiley, New York, 1961) Google Scholar
  66. 66.
    J. Blazevska-Gilev, J. Kupcik, J. Subrt, Z. Bastl, A. Galikova, J. Pola, Polym. Degrad. Stab. 91, 2241 (2006) CrossRefGoogle Scholar
  67. 67.
    J. Kupcik, J. Blazevska-Gilev, J. Pola, Macromol. Rapid. Commun. 26, 386 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Lazare
    • 1
  • I. Elaboudi
    • 1
  • M. Castillejo
    • 2
  • A. Sionkowska
    • 3
  1. 1.Institut des Sciences Moléculaires (ISM) UMR 5255Université Bordeaux 1TalenceFrance
  2. 2.Instituto de Química Física Rocasolano, CSICMadridSpain
  3. 3.Faculty of ChemistryNicolaus Copernicus UniversityToruńPoland

Personalised recommendations