Applied Physics A

, Volume 101, Issue 1, pp 209–214 | Cite as

Energy balance of a laser ablation plume expanding in a background gas

  • Salvatore Amoruso
  • Jørgen Schou
  • James G. Lunney


The energy balance of a laser ablation plume in an ambient gas for nanosecond pulses has been investigated on the basis of the model of Predtechensky and Mayorov (PM), which provides a relatively simple and clear description of the essential hydrodynamics. This approach also leads to an insightful description in dimensionless units of how the initial kinetic energy of the plume is dissipated into kinetic and thermal energy of the background gas. Eventually when the plume has stopped, the initial kinetic energy of the plume is converted into thermal energy of the plume and background gas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Eason (ed.), Pulsed Laser Deposition of Thin Films (Wiley, Hoboken, 2007) Google Scholar
  2. 2.
    C.R. Phipps (ed.), Laser Ablation and Its Applications (Springer, New York, 2007) Google Scholar
  3. 3.
    D.H. Lowndes, in Laser Ablation and Desorption, ed. by J.C. Miller, R.F. Haglund. Experimental Methods in the Physical Sciences, vol. 30 (Academic Press, New York, 1998), p. 475 CrossRefGoogle Scholar
  4. 4.
    J. Schou, Appl. Surf. Sci. 255, 5191 (2009) CrossRefADSGoogle Scholar
  5. 5.
    M. Kuwata, B. Luk’yanchuk, T. Yabe, Jpn. J. Appl. Phys. 40, 4262 (2001) CrossRefADSGoogle Scholar
  6. 6.
    S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, Phys. Rev. B 67, 224503 (2003) CrossRefADSGoogle Scholar
  7. 7.
    T.E. Itina, J. Hermann, P. Delaporte, M. Sentis, Phys. Rev. E 66, 066406 (2002) CrossRefADSGoogle Scholar
  8. 8.
    R.F. Wood, K.R. Chen, J.N. Leboeuf, A.A. Puretzky, D.B. Geohegan, Phys. Rev. Lett. 79, 1571 (1997) CrossRefADSGoogle Scholar
  9. 9.
    N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69, S87 (1999) ADSGoogle Scholar
  10. 10.
    M.R. Predtechensky, A.P. Mayorov, Appl. Supercond. 1, 2011 (1993) CrossRefGoogle Scholar
  11. 11.
    S. Amoruso, J. Schou, J.G. Lunney, Appl. Phys. A 92, 907 (2008) CrossRefADSGoogle Scholar
  12. 12.
    A. Sambri, S. Amoruso, X. Wang, F. Miletto Granozio, R. Bruzzese, J. Appl. Phys. 104, 053304 (2008) CrossRefADSGoogle Scholar
  13. 13.
    A. Sambri, M. Radovic’, X. Wang, S. Amoruso, F. Miletto Granozio, R. Bruzzese, Appl. Surf. Sci. 254, 790 (2007) CrossRefADSGoogle Scholar
  14. 14.
    A. Sambri, S. Amoruso, X. Wang, M. Radovic, F. Miletto Granozio, R. Bruzzese, Appl. Phys. Lett. 91, 151501 (2007) CrossRefADSGoogle Scholar
  15. 15.
    S. Amoruso, R. Bruzzese, X. Wang, J. Xia, Appl. Phys. Lett. 92, 041503 (2008) CrossRefADSGoogle Scholar
  16. 16.
    N. Huber, J. Gruber, N. Arnold, J. Heitz, D. Bäuerle, Europhys. Lett. 51, 674 (2000) CrossRefADSGoogle Scholar
  17. 17.
    S. Amoruso, B. Toftmann, J. Schou, Phys. Rev. E 69, 056403 (2004) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Salvatore Amoruso
    • 1
  • Jørgen Schou
    • 2
  • James G. Lunney
    • 3
  1. 1.Coherentia CNR SPIN and Dipartimento di Scienze FisicheUniversità degli Studi di Napoli Federico II, Complesso Universitario di Monte S. AngeloNapoliItaly
  2. 2.Department of Photonics Engineering, Risø CampusTechnical University of DenmarkRoskildeDenmark
  3. 3.School of PhysicsTrinity College DublinDublinIreland

Personalised recommendations