Applied Physics A

, Volume 100, Issue 4, pp 1061–1067 | Cite as

Controllable synthesis and shape-dependent photocatalytic activity of ZnO nanorods with a cone and different aspect ratios and of short-and-fat ZnO microrods by varying the reaction temperature and time

  • Lina Zhang
  • Heqing Yang
  • Junhu Ma
  • Li Li
  • Xuewen Wang
  • Lihui Zhang
  • Sha Tian
  • Xinyue Wang
Article

Abstract

ZnO nanorods with a cone and different aspect ratios and short-and-fat ZnO microrods were synthesized via a hydrothermal reaction of Zn with Zn(CH3COO)2 and H2O. The control over these ZnO nanocrystals with a wurtzite structure and different shapes was achieved by adjusting only the reaction temperature and time. A possible kinetic mechanism was proposed to account for the growth of these ZnO nanocrystals with different shapes. Photocatalytic activities of ZnO nanocrystals with distinctive shapes in the degradation of methyl orange were investigated. The results indicate that the photocatalytic ability of the ZnO nanorods with a cone and different aspect ratios is stronger than that of the short-and-fat microrods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001) CrossRefADSGoogle Scholar
  2. 2.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Science 292, 1897 (2001) CrossRefADSGoogle Scholar
  3. 3.
    M.A. Garcia, J.M. Merino, A. Quesada, J.D.L. Venta, G.R. Castro, P. Crespo, Nano Lett. 7, 1489 (2007) CrossRefADSGoogle Scholar
  4. 4.
    Z.L. Wang, Appl. Phys. A 88, 7 (2007) CrossRefADSGoogle Scholar
  5. 5.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 126, 16744 (2004) CrossRefGoogle Scholar
  6. 6.
    Z.W. Pan, M.M. Shannon, S. Dai, H.L. Douglas, Nano Lett. 5, 723 (2005) CrossRefADSGoogle Scholar
  7. 7.
    X.Y. Kong, Z.L. Wang, Nano Lett. 3, 1625 (2003) CrossRefADSGoogle Scholar
  8. 8.
    J.H. He, J.H. Hu, C.W. Wang, H.N. Lin, L.J. Chen, Z.L. Wang, J. Phys. Chem. B 110, 50 (2006) CrossRefGoogle Scholar
  9. 9.
    R.A. Laudies, A.A. Ballman, J. Phys. Chem. 64, 688 (1960) CrossRefGoogle Scholar
  10. 10.
    L. Li, H.Q. Yang, J. Yu, Y. Chen, J.H. Ma, J.Y. Zhang, Y.Z. Song, F. Gao, J. Cryst. Crowth 311, 4199 (2009) CrossRefADSGoogle Scholar
  11. 11.
    I.H. Allon, R. Fan, R.R. He, P.D. Yang, Nano Lett. 5, 457 (2005) CrossRefADSGoogle Scholar
  12. 12.
    J.H. Zhang, H.Y. Liu, Z.L. Wang, N.B. Ming, Z.G. Li, S.B. Alexandru, Adv. Funct. Mater. 17, 3897 (2007) CrossRefGoogle Scholar
  13. 13.
    A. Tamar, Y.Y. Gong, P.K. Mark, M. Yin, K. Igor, N. Gertrude, O.B. Stephen, J. Phys. Chem. B 109, 14314 (2005) CrossRefGoogle Scholar
  14. 14.
    Z.H. Zhang, M.H. Lu, H.R. Xu, C. Wee-Shong, Chem. Eur. J. 13, 632 (2007) CrossRefGoogle Scholar
  15. 15.
    K. Soumitra, D. Apurba, C.H. Subhadra, J. Phys. Chem. B 110, 17848 (2006) CrossRefGoogle Scholar
  16. 16.
    F. Li, Y. Ding, P.X. Gao, X.Q. Xin, Z.L. Wang, Angew. Chem. Int. Ed. 43, 5238 (2004) CrossRefGoogle Scholar
  17. 17.
    R.G. Xie, D.S. Li, H. Zhang, D.R. Yang, S. Takashi, B.D. Liu, B. Yoshi, J. Phys. Chem. B 110, 19147 (2006) CrossRefGoogle Scholar
  18. 18.
    J. Jin, G.K. Soon, J.H. Yu, H. Taeghwan, Adv. Mater. 17, 1873 (2005) CrossRefGoogle Scholar
  19. 19.
    L.E. Green, B.D. Yuhas, M. Law, D. Zitoun, P. Yang, Inorg. Chem. 45, 7535 (2006) CrossRefGoogle Scholar
  20. 20.
    J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao, C.H. Yan, Chem. Mater. 14, 4172 (2002) CrossRefGoogle Scholar
  21. 21.
    Z.L. Wang, J. Phys., Condens. Matter 16, R829 (2004) CrossRefADSGoogle Scholar
  22. 22.
    N. Tian, Z.Y. Zhou, S.C. Sun, Y. Ding, Z.L. Wang, Science 316, 732 (2007) CrossRefADSGoogle Scholar
  23. 23.
    Q. Wan, T.H. Wang, J.C. Zhao, Appl. Phys. Lett. 87, 083105 (2005) CrossRefADSGoogle Scholar
  24. 24.
    F. Xu, Z.Y. Yuan, G.H. Du, T.Z. Ren, B. Claire, B.L. Su, Nanotechnology 17, 588 (2006) CrossRefADSGoogle Scholar
  25. 25.
    J.H. Zeng, B.B. Jin, Y.F. Wang, Chem. Phys. Lett. 472, 90 (2009) CrossRefADSGoogle Scholar
  26. 26.
    B. Davide, P.F. Angelo, G. Alberto, M. Chiara, M. Cinzia, T. Eugenio, Chem. Vap. Depos. 13, 618 (2007) CrossRefGoogle Scholar
  27. 27.
    Z.W. Deng, M. Chen, G.X. Gu, L.M. Wu, J. Phys. Chem. B 112, 1622 (2008) Google Scholar
  28. 28.
    H.Q. Wang, G.H. Li, L.C. Jia, G.Z. Wang, C.J. Tang, J. Phys. Chem. C 112, 11738 (2008) CrossRefGoogle Scholar
  29. 29.
    F. Xu, G.H. Du, H. Matej, B.H. Su, Chem. Phys. Lett. 426, 129 (2006) CrossRefADSGoogle Scholar
  30. 30.
    F. Lu, W.P. Cai, Y.G. Zhang, Adv. Funct. Mater. 18, 1047 (2008) CrossRefGoogle Scholar
  31. 31.
    L. Zhang, Y. Zhu, J. Appl. Phys. A 97, 847 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lina Zhang
    • 1
  • Heqing Yang
    • 1
  • Junhu Ma
    • 1
  • Li Li
    • 1
  • Xuewen Wang
    • 1
  • Lihui Zhang
    • 1
  • Sha Tian
    • 1
  • Xinyue Wang
    • 1
  1. 1.School of Chemistry and Materials Science, Key Laboratory of Macromolecular Science of Shaanxi ProvinceShaanxi Normal UniversityXi’anChina

Personalised recommendations