Applied Physics A

, Volume 100, Issue 1, pp 177–180

Minimum spacing between suspended nanorods determined by stiction during two-photon polymerization

  • Mao-Zhu Sun
  • Yan Li
  • Hai-Bo Cui
  • Hong Yang
  • Qi-Huang Gong
Article

Abstract

The influence of stiction on the minimum spacing between suspended nanorods fabricated by femtosecond-laser-induced two-photon polymerization has been investigated. The minimum spacing is predicted based on a theoretical model calculating the adhesion length of a nanorod pair, which is in good agreement with the experimental results for suspended nanorods with feature size of around 200 nm. This is helpful for the polymerization of three-dimensional functional nanostructures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.S. Lee, R.H. Kim, D.Y. Yang, S.H. Park, Prog. Polym. Sci. 33, 631 (2008) CrossRefGoogle Scholar
  2. 2.
    S.H. Park, D.Y. Yang, K.S. Lee, Laser Photon. Rev. 3, 1 (2009) CrossRefGoogle Scholar
  3. 3.
    S. Maruo, J.T. Fourkas, Laser Photon. Rev. 2, 100 (2008) CrossRefGoogle Scholar
  4. 4.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001) CrossRefADSGoogle Scholar
  5. 5.
    W.H. Zhou, S.M. Kuebler, K.L. Braun, T.Y. Yu, J.K. Cammack, C.K. Ober, J.W. Perry, S.R. Marder, Science 296, 1106 (2002) CrossRefADSGoogle Scholar
  6. 6.
    H.B. Sun, K. Tanaka, S. Kawata, Appl. Phys. Lett. 80, 3673 (2002) CrossRefADSGoogle Scholar
  7. 7.
    D.F. Tan, Y. Li, F.J. Qi, H. Yang, Q.H. Gong, X.Z. Dong, X.M. Duan, Appl. Phys. Lett. 90, 071106 (2007) CrossRefADSGoogle Scholar
  8. 8.
    L.J. Li, R.R. Gattass, E. Gershgoren, H. Hwang, J.T. Fourkas, Science 324, 910 (2009) CrossRefADSGoogle Scholar
  9. 9.
    K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa, Appl. Phys. Lett. 88, 221101 (2006) CrossRefADSGoogle Scholar
  10. 10.
    T.S. Drakakis, G. Papadakis, K. Sambani, G. Filippidis, S. Georgiou, E. Gizeli, C. Fotakis, M. Farsari, Appl. Phys. Lett. 89, 144108 (2006) CrossRefADSGoogle Scholar
  11. 11.
    H.B. Sun, T. Suwa, K. Takada, R.P. Zaccaria, M.S. Kim, K.S. Lee, S. Kawata, Appl. Phys. Lett. 85, 3708 (2004) CrossRefADSGoogle Scholar
  12. 12.
    T.W. Lim, S.H. Park, D.Y. Yang, Microelectron. Eng. 77, 382 (2005) CrossRefGoogle Scholar
  13. 13.
    Y. Li, F.J. Qi, H. Yang, Q.H. Gong, X.Z. Dong, X.M. Duan, Nanotechnology 19, 055303 (2008) CrossRefGoogle Scholar
  14. 14.
    Y. Li, H.B. Cui, F.J. Qi, H. Yang, Q.H. Gong, Nanotechnology 19, 373504 (2008) Google Scholar
  15. 15.
    A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis, ACS Nano 2, 2257 (2008) CrossRefGoogle Scholar
  16. 16.
    C.H. Mastrangelo, C.H. Hsu, J. Microelectromech. Syst. 2, 33 (1993) CrossRefGoogle Scholar
  17. 17.
    D.M. Wu, N. Fang, C. Sun, X. Zhang, Appl. Phys. Lett. 81, 3963 (2002) CrossRefADSGoogle Scholar
  18. 18.
    D.M. Wu, N. Fang, C. Sun, X. Zhang, Sens. Actuators A 128, 109 (2006) CrossRefGoogle Scholar
  19. 19.
    H.S. Hwang, J.T. Song, J. Micromech. Microeng. 17, 245 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Mao-Zhu Sun
    • 1
  • Yan Li
    • 1
  • Hai-Bo Cui
    • 1
  • Hong Yang
    • 1
  • Qi-Huang Gong
    • 1
  1. 1.State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking UniversityBeijingChina

Personalised recommendations