Applied Physics A

, Volume 99, Issue 4, pp 763–766 | Cite as

Direct fabrication of electrically functional microstructures by fully voltage-controlled electrohydrodynamic jet printing of silver nano-ink

  • Ke WangEmail author
  • John P. W. Stark


We report electrohydrodynamic jet (E-jet) printing of a commercialised silver nano-ink in fully voltage-controlled fashion. Metallic pads and conducting tracks with hundred-micron feature size were drop-on-demands produced on Si substrates. Layer-by-layer printing was further performed, demonstrating a capability in creating 3D multistructures. Planar pattern with a large inductance of 2.5 μH and an excellent resistivity of 4.2×10−8 Ω m was fabricated, showing a true inductive device. Our result demonstrates a feasibility of E-jet printing in the application of smart electronic devices fabrication.


Solid Freeform Fabrication Planar Pattern Large Inductance Printing System Direct Fabrication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Roy, J. Phys. D, Appl. Phys. 40, R413 (2007) CrossRefADSGoogle Scholar
  2. 2.
    J. Park, M. Hardy, S. Kang, K. Barton et al., Nat. Mater. 6, 782 (2007) CrossRefADSGoogle Scholar
  3. 3.
    J. Choi, Y. Kim, S. Lee, S. Son, H. Ko, V. Nguyen, D. Byun, Appl. Phys. Lett. 93, 193508 (2008) CrossRefADSGoogle Scholar
  4. 4.
    D.Y. Lee, J.S. Yu, S.E. Park, T.U. Yu, J.H. Hwang, Appl. Phys. Lett. 90, 081905 (2007) CrossRefADSGoogle Scholar
  5. 5.
    D.Y. Lee, E.S. Hwang, T.U. Yu, Y.J. Kim, J.H. Hwang, Appl. Phys. A 82, 671 (2006) CrossRefADSGoogle Scholar
  6. 6.
    D.Z. Wang, S.N. Jayasinghe, M.J. Edirisinghe, Rev. Sci. Instrum. 76, 075105 (2005) CrossRefADSGoogle Scholar
  7. 7.
    A.L. Dearden, P.J. Smith, D.Y. Shin, N. Reis, B. Derby, P. O’Brien, Macromolecular 26, 315 (2005) Google Scholar
  8. 8.
    K. Wang, J.P.W. Stark, J. Nanopart. Res. 12(3), 707 (2010) CrossRefGoogle Scholar
  9. 9.
    W.D. Luedtke, U. Landman, Y.H. Chiu, D.J. Levandier, R.A. Dressler, S. Sok, M.S. Gordon, J. Phys. Chem. A 112, 9628 (2008) Google Scholar
  10. 10.
    J. Zeleny, Phys. Rev. 3, 69 (1914) CrossRefADSGoogle Scholar
  11. 11.
    J.H. Yu, S.Y. Kim, J. Hwang, Appl. Phys. A 89, 157 (2007) CrossRefGoogle Scholar
  12. 12.
    M.S. Alexander, M.D. Paine, J.P.W. Stark, Anal. Chem. 78, 2658 (2006) CrossRefGoogle Scholar
  13. 13.
    M.D. Paine, M.S. Alexander, J.P.W. Stark, J. Colloid Interface Sci. 305, 111 (2007) CrossRefGoogle Scholar
  14. 14.
    K. Wang, Z. Tan, C. Ryan, K.L. Smith, M.D. Paine, J.P.W. Stark, Sens. Actuators B, Chem. (2010). doi: 10.1016/j.snb.2010.03.070 Google Scholar
  15. 15.
    K. Wang, M.D. Paine, J.P.W. Stark, J. Appl. Phys. 106, 024907 (2009) CrossRefADSGoogle Scholar
  16. 16.
    M.D. Paine, M.S. Alexander, K.L. Smith, M. Wang, J.P.W. Stark, Aerosol. Sci. 38, 315 (2007) CrossRefGoogle Scholar
  17. 17.
    K. Wang, M.D. Paine, J.P.W. Stark, J. Mater. Sci., Mater. Electron. 20(11), 1154 (2009) CrossRefGoogle Scholar
  18. 18.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of Engineering and Materials ScienceQueen Mary, University of LondonLondonUK

Personalised recommendations