Advertisement

Applied Physics A

, Volume 100, Issue 3, pp 607–612 | Cite as

Papyrus imaging with terahertz time domain spectroscopy

  • J. Labaune
  • J. B. Jackson
  • S. Pagès-Camagna
  • I. N. Duling
  • M. Menu
  • G. A. Mourou
Article

Abstract

Terahertz time domain spectroscopic imaging (THz-TDSI) is a non-ionizing, non-contact and non-destructive measurement technique that has been recently utilized to study cultural heritage artifacts. We will present this technique and the results of non-contact measurements of papyrus texts, including images of hidden papyri. Inks for modern papyrus specimens were prepared using the historical binder, Arabic gum, and two common pigments used to write ancient texts, carbon black and red ochre. The samples were scanned in reflection at normal incidence with a pulse with a spectral range between 0.1 and 1.5 THz. Temporal analysis of the signals provides the depths of the layers, and their frequency spectra give information about the inks.

Keywords

Terahertz Wave Terahertz Pulse Ancient Text Terahertz Signal Normal Incidence Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Ware, D.M. Chabries, R.W. Christiansen, C.E. Martin, in Proc. IEEE Int. Geoscience and Remote Sensing Symp., vol. 6 (2000), p. 2486 Google Scholar
  2. 2.
    Y. Lin, W.B. Seales, in Proc. IEEE Conf. Computer Vision, vols. 1–2 (2005), p. 662 Google Scholar
  3. 3.
    D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, M. Koch, Appl. Phys. B 68, 1085 (1999) CrossRefADSGoogle Scholar
  4. 4.
    Y. Sasaki, H. Hoshina, M. Yamashita, G. Okazaki, C. Otani, K. Kawase, in Conf. Infrared, and Millimeter Waves, vols. 1–2 (2007), pp. 266–267 Google Scholar
  5. 5.
    J.B. Jackson, M. Mourou, J.F. Whitaker, I.N. Duling III, S.L. Williamson, M. Menu, G.A. Mourou, Opt. Commun. 281, 527 (2008) CrossRefADSGoogle Scholar
  6. 6.
    K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, in 33rd Int Conf. Infrared, Millimeter, and Terahertz Waves, vols. 1–2 (2008), p. 13 Google Scholar
  7. 7.
    K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, IEICE Electron. Express 4(8), 258 (2007) CrossRefGoogle Scholar
  8. 8.
    W.L. Chan, J. Deibel, D.M. Mittleman, Rep. Prog. Phys. 70, 1325 (2007) CrossRefADSGoogle Scholar
  9. 9.
    S. Wang, X.C. Zhang, J. Phys. D: Appl. Phys. 37, 1 (2004) CrossRefADSGoogle Scholar
  10. 10.
    M. Naftaly, R. Dudley, Opt. Lett. 34, 10677 (2009) Google Scholar
  11. 11.
    D.M. Mittleman, S. Hunsche, L. Boivin, M.C. Nuss, Opt. Lett. 22(12), 904 (1997) CrossRefADSGoogle Scholar
  12. 12.
    D. Zimdars, G. Fichter, A. Chernovsky, in 33rd Int. Conf. Infrared, Millimeter, and Terahertz Waves, vols. 1–2 (2008), p. 505 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • J. Labaune
    • 1
    • 2
  • J. B. Jackson
    • 1
  • S. Pagès-Camagna
    • 2
  • I. N. Duling
    • 3
  • M. Menu
    • 2
  • G. A. Mourou
    • 1
  1. 1.Institut de la Lumière ExtrêmeEcole PolytechniquePalaiseauFrance
  2. 2.Centre de Recherche et de Restauration des Musées de FranceParisFrance
  3. 3.PicometrixAnn ArborUSA

Personalised recommendations