Applied Physics A

, Volume 100, Issue 1, pp 1–6 | Cite as

Tuning the structural properties of femtosecond-laser-induced nanogratings

  • Lourdes Patricia R. Ramirez
  • Matthias Heinrich
  • Sören Richter
  • Felix Dreisow
  • Robert Keil
  • Alexander V. Korovin
  • Ulf Peschel
  • Stefan Nolte
  • Andreas Tünnermann
Invited paper

Abstract

We present the results of our investigations on the formation process of nanogratings in fused silica and the influence of fabrication parameters, thereby identifying ways to systematically control the grating properties. Nanogratings, self-organized nanostructures with subwavelength periodicity, are formed in certain parameter ranges during femtosecond-laser processing of transparent materials, resulting in characteristic birefringent modifications. They provide the opportunity for the fabrication of arbitrary three-dimensional birefringent elements with position-dependent retardation. Based on our findings, we were able to fabricate birefringent elements with various precise retardations in otherwise isotropic fused silica.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Ratkay-Traub, T. Juhasz, C. Horvath, C. Suarez, K. Kiss, I. Ferincz, R. Kurtz, Ultra-short pulse femtosecond laser surgery. Ophthalmol. Clin. North. Am. 14, 347 (2001) Google Scholar
  2. 2.
    S.P.D. Mangles, C.D. Murphy, Z. Najmudin, A.G.R. Thomas, Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535 (2004) CrossRefADSGoogle Scholar
  3. 3.
    K. Itoh, W. Watanabe, S. Nolte, C. Schaffer, Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006) Google Scholar
  4. 4.
    J. Thomas, M. Heinrich, J. Burghoff, S. Nolte, A. Ancona, A. Tünnermann, Femtosecond laser-written quasi-phase-matched waveguides in lithium niobate. Appl. Phys. Lett. 91, 151108 (2007) CrossRefADSGoogle Scholar
  5. 5.
    C. Wochnowski, Y. Cheng, K. Meteva, K. Sugioka, K. Midorikawa, S. Metev, Femtosecond-laser induced formation of grating structures in planar polymer substrates. J. Opt. A 7, 492 (2005) ADSGoogle Scholar
  6. 6.
    Y. Shimotsuma, P. Kazansky, J. Qiu, K. Hirao, Selforganized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003) CrossRefADSGoogle Scholar
  7. 7.
    J.D. Mills, P.G. Kazansky, E. Bricchi, J.J. Baumberg, Embedded anisotropic microreflectors by femtosecondlaser micromachining. Appl. Phys. Lett. 81, 196 (2002) CrossRefADSGoogle Scholar
  8. 8.
    C. Hnatovsky, R. Taylor, E. Simova, P.P. Rajeev, D.M. Rayner, V.R. Bhardwaj, P. Corkum, Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl. Phys. Lett. 84, 47 (2006) Google Scholar
  9. 9.
    W. Cai, A.R. Libertun, R. Piestun, Polarization selective computergenerated holograms realized in glass by femtosecond laser induced nanogratings. Opt. Exp. 14, 3785 (2006) CrossRefADSGoogle Scholar
  10. 10.
    G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, R. Stoian, Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass. Opt. Exp. 17, 9515 (2009) CrossRefADSGoogle Scholar
  11. 11.
    R. Taylor, C. Hnatovsky, E. Simova, Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photon. Rev. 2, 26 (2008) CrossRefGoogle Scholar
  12. 12.
    P.P. Rajeev, M. Gertsvolf, E. Simova, C. Hnatovsky, R.S. Taylor, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Memory in nonlinear ionization of transparent solids. Phys. Rev. Lett. 97, 253001 (2006) CrossRefADSGoogle Scholar
  13. 13.
    R.S. Taylor, C. Hnatovsky, E. Simova, D.M. Rayner, M. Mehandale, V.R. Bhardwaj, P.B. Corkum, Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures. Opt. Exp. 11, 775 (2003) CrossRefADSGoogle Scholar
  14. 14.
    P. Yang, G.R. Burns, J. Guo, T.S. Luk, G.A. Vawter, Femtosecond laser-pulse-induced birefringence in optically isotropic glass. J. Appl. Phys. 95, 5820 (2004) CrossRefGoogle Scholar
  15. 15.
    A. Brodeur, S.L. Chin, Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B 16, 637 (1999) CrossRefADSGoogle Scholar
  16. 16.
    R. Osellame, M. Lobini, N. Chiodo, M. Marangoni, G. Cerullo, R. Ramponi, H. Bookey, R. Thompson, N. Psaila, A. Kar, Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl. Phys. Lett. 90, 241107 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lourdes Patricia R. Ramirez
    • 1
  • Matthias Heinrich
    • 1
  • Sören Richter
    • 1
  • Felix Dreisow
    • 1
  • Robert Keil
    • 1
  • Alexander V. Korovin
    • 2
  • Ulf Peschel
    • 2
  • Stefan Nolte
    • 1
    • 3
  • Andreas Tünnermann
    • 1
    • 3
  1. 1.Institute of Applied PhysicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Max Planck Institute for the Science of LightErlangenGermany
  3. 3.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany

Personalised recommendations