Advertisement

Applied Physics A

, Volume 100, Issue 1, pp 245–248 | Cite as

Growth of nanoparticles in hydrogen-implanted palladium subsurfaces

  • F. Okuyama
Article

Abstract

Solid particles with nanometric dimensions are shown to grow in the opened subsurface of a polycrystalline palladium (Pd) hydrogen-implanted at around 500°C. The particles are Pd in main composition and densely grown on sloping walls of fissured grain boundaries or cracks. The average grain size increases from deeper to shallow regions, suggesting that a negative temperature gradient toward the surface existed along the crack walls. The nanoparticles are certain to arise from the condensation of Pd vapors on the walls, forcing us to assume that hydrogen atoms implanted in an overpopulation heated their implantation zone so strongly as to vaporize Pd.

Keywords

Deuteride Nanometric Dimension Incline Wall Bombardment Time Slope Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Worsham Jr., M.K. Wilkinson, C.G. Shull, J. Phys. Chem. Solids 303, 303 (1957) CrossRefGoogle Scholar
  2. 2.
    H. Wipf, in Hydrogen in Metals, ed. by H. Wipf (Springer, Berlin, 1997), Chapter 3 CrossRefGoogle Scholar
  3. 3.
    R.J. Wolf, M.W. Lee, J.R. Ray, Phys. Rev. Lett. 73, 557 (1994) CrossRefADSGoogle Scholar
  4. 4.
    M. Möller, F. Besenbacher, J. Bøttiger, Appl. Phys. A 27, 19 (1982) CrossRefADSGoogle Scholar
  5. 5.
    X.W. Lin, M.O. Ruault, A. Traverse, J. Chauman, M. Salomé, H. Bernas, Phys. Rev. Lett. 56, 1385 (1986) CrossRefGoogle Scholar
  6. 6.
    A. Züttel, Ch. Nützenadel, G. Schmid, Ch. Emmenegger, P. Sudan, L. Schlopbach, Appl. Surf. Sci. 162–163, 571 (2000) CrossRefGoogle Scholar
  7. 7.
    F. Okuyama, H. Muto, T. Tsujimaki, Surf. Sci. 355, L341 (1996) CrossRefGoogle Scholar
  8. 8.
    F. Okuyama, T. Tsujimaki, Surf. Sci. 382, L7000 (1997) CrossRefGoogle Scholar
  9. 9.
    S. Senda, F. Okuyama, Phil. Mag. Lett. 84, 411 (2004) CrossRefADSGoogle Scholar
  10. 10.
    S. Horiuchi, in Fundamentals of High-Resolution Transmission Electron Microscopy (North-Holland, Amsterdam, 1994), Chapter 9 [See, for example] Google Scholar
  11. 11.
    H. Fujita, J. Electron Microsc. 48, 981 (1999) Google Scholar
  12. 12.
    P.C. Zalm, L.G. Beckers, Appl. Phys. 56, 220 (1984) CrossRefGoogle Scholar
  13. 13.
    Lindhard, M.S. Scharf, H.E. Shiøtt, Mat-Fys. Medd. Dan. Vid. Selesk 33, 24 (1963) Google Scholar
  14. 14.
    W. Kohl, Handbook of Materials and Techniques for Vacuum Devices (American Institute of Physics Press, New York, 1967), p. 607 Google Scholar
  15. 15.
    F. Okuyama, H. Takamori, Nucl. Instrum. Methods B 267, 773 (2009) CrossRefADSGoogle Scholar
  16. 16.
    B. Bamplin, Crystal Growth (Pergamon, Oxford, 1975), Chapter 2 Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations