Advertisement

Applied Physics A

, Volume 100, Issue 3, pp 873–884 | Cite as

Furfural as a marker of cellulose degradation. A quantitative approach

  • Tomasz ŁojewskiEmail author
  • Tomasz Sawoszczuk
  • Janusz Marek Łagan
  • Katarzyna Zięba
  • Andrzej Barański
  • Joanna Łojewska
Article

Abstract

Non-destructive methods of sampling during the physicochemical studies of historical objects such as old books and manuscripts seem to be an obvious choice. Since furfural has been shown to be one of the most abundant gaseous products of cellulose degradation, it can be considered as a convenient marker of degradation progress. The number of quantitative data concerning correlations between the emission of furfural and physicochemical and mechanical properties of paper is rather scarce in the literature. In the present studies, a model paper containing more than 99% of cellulose was aged inside closed vials at 90°C. Gaseous products of paper degradation were measured using sorption tubes filled with Tenax TA sorbent and GC-MS. The method has proved to be sufficiently sensitive for measuring furfural emission not only in accelerated degradation at 90°C but also during natural ageing of paper at room temperature even in relatively short time intervals of 2–28 days. The correlations between furfural emission and polymerization degree, pH, color, tear index, number of double folds and breaking length have been statistically confirmed at confidence level α=0.001. Basing on them it was possible to estimate the number of broken glycosidic bonds per one molecule of furfural formed during degradation—we found a value equal to 9.2.

Keywords

VOCs Furfural SPME Cellulose Degradation Polymerization Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Ott (ed.), Cellulose and Cellolose Derivatives. High Polymers (Interscience, New York, 1943) Google Scholar
  2. 2.
    G. Buchbauer, L. Jirovetz, M. Wasicky, A. Nikiforov, J. Pulp Pap. Sci. 21, 398–400 (1995) Google Scholar
  3. 3.
    K. Wiik, T. Helle, Nord. Pulp Pap. Res. J. 14, 268–272 (1999) CrossRefGoogle Scholar
  4. 4.
    A. Lattuati-Derieux, S. Bonnassies-Termes, B. Lavedrine, J. Chromatogr. A 1026, 9–18 (2004) CrossRefGoogle Scholar
  5. 5.
    T. Doering, P. Fisher, U. Binder, J. Liers, G. Banik, in Advances in Paper and Board Performance, Proceedings of the 27th Research Conference of IARIGAI, Graz, Austria, ed. by J.A. Bristow, Advances in Printing Science & Technology, vol. 27, 10–13 September 2002 Google Scholar
  6. 6.
    M. Strlič, I. Kralj Cigić, J. Kolar, G. de Bruin, B. Pihlar, Sensors 7, 3136–3145 (2007). www.mdpi.org/sensors CrossRefGoogle Scholar
  7. 7.
    O. Ramalho, A.-L. Dupont, C. Egasse, A. Lattuati-Derieux, in Emission Rates of VOC from Paper versus Cellulose Degradation: An Integrated Approach to Paper Characterization, 8th Indoor Air Quality 2008 Meeting, Kunsthistorisches Museum, Vienna, 17–19 April 2008 Google Scholar
  8. 8.
    A. Lattuati-Derieux, S. Bonnassies-Termes, B. Lavedrine, J. Cult. Herit. 7, 123–133 (2006) CrossRefGoogle Scholar
  9. 9.
    ASTM D6819-02. Standard Test Method for Accelerated Temperature Ageing of Printing and Writing Paper by Dry Oven Exposure Apparatus, Reapproved, 2007 Google Scholar
  10. 10.
    J.B.G.A. Havermans, M.A.P.C. de Feber, W.J.L. Genuit, G.J. van Venzel, in Proceedings of the ICOM Committee for Conservation (James and James Science, London, 1999), p. 513 Google Scholar
  11. 11.
    A.M. Emsley, G.C. Stevens, Cellulose 1, 26–56 (1994) CrossRefGoogle Scholar
  12. 12.
    Y. Houminer, S. Patai, Isr. J. Chem. 7, 513 (1969) Google Scholar
  13. 13.
    F. Shafizadeh, Y.Z. Lai, J. Org. Chem. 37, 278 (1972) CrossRefGoogle Scholar
  14. 14.
    J. Scheirs, G. Camino, M. Avidano, W. Tumiatti, J. Appl. Polym. Sci. 69, 2541–2547 (1998) CrossRefGoogle Scholar
  15. 15.
    The Effects of Air Pollutants on the Accelerated Ageing of Cellulose Containing Materials—Paper. Step Project CT 90-0100, The Joint Report of TNO, Centre for Paper and Board Research; CRCDG, Centre de Recherches sur la Conservation des Documents Graphiques; STFi, Swedish Pulp and Paper Research Institute; Chalmers University of Technology and Göteborg University, p. 62 Google Scholar
  16. 16.
    TAPPI standard T509 om-02; Hydrogen ion concentration (pH) of paper extracts (cold extraction method) Google Scholar
  17. 17.
    C.J. Shahani, S.B. Lee, F.H. Hengemihle, G. Harrison, P. Song, M.L. Sierra, C.C. Ryan, N. Weberg, Accelerated Aging of Paper, Research Program on Effects of Aging on Printing and Writing Papers at the ASTM Institute for Standards Research, December 2001 Google Scholar
  18. 18.
    T. Sawoszczuk, A. Barański, J.M. Łagan, T. Łojewski, K. Zięba, J. Cult. Herit. 9, 401–411 (2008) CrossRefGoogle Scholar
  19. 19.
    Scandinavian Pulp, Paper and Board Testing Committee, Scan-CM 15:88 Standard, Rev. 1988 Google Scholar
  20. 20.
    K. Zięba, Ph.D. Thesis, Jagiellonian University, Faculty of Chemistry, 2009 Google Scholar
  21. 21.
    R. Stol, J.L. Pedersoli Jr., H. Poppe, W.T. Kok, Anal. Chem. 74, 2314–2320 (2002) CrossRefGoogle Scholar
  22. 22.
    Zero Span-Breaking Strength of Pulp (Dry Zero Span Tensile) Google Scholar
  23. 23.
    T. TAPPI Method, 414 om-98 Internal tear resistance of paper Google Scholar
  24. 24.
    TAPPI standard T511 om-96; Folding endurance of paper (MIT tester) Google Scholar
  25. 25.
    M. Strlič, J. Kolar, D. Kočar, T. Drnovsek, V.-S. Selih, R. Susic, B. Pihlar, e-Preserv. Sci. 1, 35–47 (2004) Google Scholar
  26. 26.
    W.E. Scott, J.C. Abbott, S. Trosset, Properties of Paper: An Introduction (TAPPI Press, Atlanta, 1995) Google Scholar
  27. 27.
    D. Fengel, G. Wegener, Wood Chemistry, Ultrastructure, Reactions (Walter de Gruyter, Berlin, 1984) Google Scholar
  28. 28.
    X. Zou, T. Uesaka, N. Gurnagul, Cellulose 3, 243–267 (1996) CrossRefGoogle Scholar
  29. 29.
    A. De Pablo, Furfural and ageing: How are they related. IEEE Xplore. www.ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=790744&isnumber=17183
  30. 30.
    T. Sawoszczuk, PhD thesis, Faculty of Chemistry, Jagiellonian University, Kraków, 2009 Google Scholar
  31. 31.
    T. Łojewski, T. Sawoszczuk, Pol. Pap. Rev. 64, 319–322 (2008) Google Scholar
  32. 32.
    J.C. Roberts, The Chemistry of Paper (The Royal Society of Chemistry, 1996) Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tomasz Łojewski
    • 1
    Email author
  • Tomasz Sawoszczuk
    • 1
  • Janusz Marek Łagan
    • 1
  • Katarzyna Zięba
    • 1
  • Andrzej Barański
    • 1
  • Joanna Łojewska
    • 1
  1. 1.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations