Applied Physics A

, Volume 99, Issue 4, pp 865–869 | Cite as

Photoluminescence and field-emission properties of Cu-doped SnO2 nanobelts

Article

Abstract

By using a thermal evaporation and condensation method, Cu-doped SnO2 nanobelts were synthesized on silicon substrate. High-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy studies of Cu-doped SnO2 nanobelts demonstrate that the nanobelts are single-crystal structures and Cu is homogeneously doped into the SnO2 lattice. X-ray diffraction further confirmed the single-phase nature of these nanobelts. The photoluminescence measurements of the nanobelts and samples annealed in oxygen were measured from 77 K to 300 K. Field-emission measurements demonstrated that the Cu-doped nanobelts possessed good performance with a turn-on field of ∼2.9 V/μm and a threshold field of ∼4.8 V/μm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991) CrossRefADSGoogle Scholar
  2. 2.
    W. Han, S. Fan, Q. Li, Y. Hu, Science 277, 1287 (1997) CrossRefGoogle Scholar
  3. 3.
    A. Morales, M. Lieber, Science 279, 208 (1998) CrossRefADSGoogle Scholar
  4. 4.
    Z. W Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947 (2001) CrossRefADSGoogle Scholar
  5. 5.
    D. Ma, C. Lee, F. Au, S. Lee, Science 299, 1874 (2003) CrossRefADSGoogle Scholar
  6. 6.
    X.Y. Kong, Y. Ding, R. Yang, Z. Wang, Science 303, 1348 (2004) CrossRefADSGoogle Scholar
  7. 7.
    A. Kolmakov, Y.X. Zhang, G.S. Cheng, M. Moskovits, Adv. Mater. 15, 997 (2003) CrossRefGoogle Scholar
  8. 8.
    R.D. Cakan, Y.S. Hu, M. Antonietti, J. Maier, M.M. Titirici, Chem. Mater. 20, 1227 (2008) CrossRefGoogle Scholar
  9. 9.
    S. Ferrere, A. Zaban, B.A. Gregg, J. Phys. Chem. B 101, 4490 (1997) CrossRefGoogle Scholar
  10. 10.
    Y.J. Chen, Q.H. Li, Y.X. Liang, T.H. Wang, Q. Zhao, D.P. Yu, Appl. Phys. Lett. 85, 5682 (2004) CrossRefADSGoogle Scholar
  11. 11.
    B. Geng, G. Wang, Z. Jiang, T. Xie, S. Sun, G. Meng, L. Zhang, Appl. Phys. Lett. 83, 4791 (2003) CrossRefADSGoogle Scholar
  12. 12.
    C. Ronning, P. Gao, Y. Ding, Z. Wang, D. Schwen, Appl. Phys. Lett. 84, 783 (2004) CrossRefADSGoogle Scholar
  13. 13.
    J. Jie, G. Wang, X. Han, Q. Yu, Y. Liao, G. Li, J. Hou, Chem. Phys. Lett. 387, 466 (2004) CrossRefADSGoogle Scholar
  14. 14.
    S. Brovelli, N. Chiodini, F. Meinardi, A. Lauria, A. Paleari, Appl. Phys. Lett. 89, 153126 (2006) CrossRefADSGoogle Scholar
  15. 15.
    X.T. Zhou, F. Heigl, M.W. Murphy, T.K. Sham, T. Regier, I. Coulthard, R.I.R. Blyth, Appl. Phys. Lett. 89, 213109 (2006) CrossRefADSGoogle Scholar
  16. 16.
    T. Moon, S.T. Hwang, D.R. Jung, D. Son, C. Kim, J. Kim, M. Kang, B. Park, J. Phys. Chem. C 111, 4164 (2007) CrossRefGoogle Scholar
  17. 17.
    D. Calestani, L. Lazzini, G. Salviati, M. Zha, Cryst. Res. Technol. 40, 937 (2005) CrossRefGoogle Scholar
  18. 18.
    G. Faglia, C. Batto, G. Sberveglieri, M. Zha, A. Zappettini, Appl. Phys. Lett. 86, 011923 (2005) CrossRefADSGoogle Scholar
  19. 19.
    D. Cai, Y. Su, Y. Chen, J. Jiang, Z. He, L. Chen, Mater. Lett. 59, 1984 (2005) CrossRefGoogle Scholar
  20. 20.
    D. Maestre, A. Cremades, J. Piqueras, J. Appl. Phys. 97, 044316 (2005) CrossRefADSGoogle Scholar
  21. 21.
    S.H. Luo, Q. Wan, W.L. Liu, M. Zhang, Z.F. Di, S.Y. Wang, Z.T. Song, C.L. Lin, J.Y. Dai, Nanotechnology 15, 1424 (2004) CrossRefADSGoogle Scholar
  22. 22.
    J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Small 2, 116 (2006) CrossRefGoogle Scholar
  23. 23.
    X. Mathew, J.P. Enriques, C.M. Garcia, G.C. Puente, M.A.C. Jacome, J.A.T. Antonio, J. Hays, A. Punnoose, J. Appl. Phys. 100, 073907 (2006) CrossRefADSGoogle Scholar
  24. 24.
    A. Dieguez, A. Romano-Rodriguez, A. Vila, J.R. Morante, J. Appl. Phys. 90, 1550 (2001) CrossRefADSGoogle Scholar
  25. 25.
    K.N. Yu, Y. Xiong, Y. Liu, C. Xiong, Phys. Rev. B 55, 2666 (1997) CrossRefADSGoogle Scholar
  26. 26.
    J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, S.S. Xie, Solid State Commun. 130, 89 (2004) CrossRefADSGoogle Scholar
  27. 27.
    J. Wu, K. Yu, L.J. Li, J.W. Xu, D.J. Shang, Y.E. Xu, Z.Q. Zhu, J. Phys. D: Appl. Phys. 41, 185302 (2008) CrossRefADSGoogle Scholar
  28. 28.
    L.J. Li, K. Yu, Z. Tang, Z.Q. Zhu, Q. Wan, J. Appl. Phys. 101, 014303 (2010) CrossRefADSGoogle Scholar
  29. 29.
    I. Sarkar, M.K. Sanyal, S. Takeyama, S. Kar, H. Hirayama, H. Mino, F. Komori, S. Biswas, Phys. Rev. B 79, 054410 (2009) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Key Laboratory of Polar Materials and Devices (Ministry of Education of China), Department of Electronic EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations