Applied Physics A

, Volume 99, Issue 1, pp 39–46

Size parameter effect of dielectric small particle mediated nano-hole patterning on silicon wafer by femtosecond laser

  • Tetsuo Sakai
  • Yuto Tanaka
  • Yuji Nishizawa
  • Mitsuhiro Terakawa
  • Minoru Obara
Article

Abstract

By use of a polystyrene particle with a fundamental (800 nm) and a second-harmonic (400 nm) wave of a femtosecond Ti:sapphire laser, nano-hole patterning properties on a silicon wafer were experimentally compared by keeping the size parameter constant. With the 800-nm wave, the patterned hole diameter ranged from 100 to 250 nm and the depth ranged from 20 to 100 nm. With the 400-nm wave, the hole diameter ranged from 50 to 200 nm while the depth ranged from 10 to 60 nm. The patterned diameter and the depth of patterned nano-holes were also controllable by the laser fluence. By the 3D finite-difference time-domain method it is numerically predicted that if the size parameter is kept at π approximately, the nano-hole patterning is efficiently performed even in the ultraviolet region of the spectrum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.F. Lu, L. Zhang, W.D. Song, Y.W. Zheng, B.S. Luk’yanchuk, JETP Lett. 72, 457 (2000) CrossRefADSGoogle Scholar
  2. 2.
    O. Watanabe, T. Ikawa, M. Hasegawa, M. Tsuchimori, Y. Kawata, Appl. Phys. Lett. 79, 1366 (2001) CrossRefADSGoogle Scholar
  3. 3.
    T. Ikawa, T. Mitsuoka, M. Hasegawa, M. Tsuchimori, O. Watanabe, Y. Kawata, Phys. Rev. B 64, 195408 (2001) CrossRefADSGoogle Scholar
  4. 4.
    S. Theppakuttai, S. Chen, Appl. Phys. Lett. 83, 758 (2003) CrossRefADSGoogle Scholar
  5. 5.
    Z.B. Wang, M.H. Hong, B.S. Luk’yanchuk, S.M. Huang, Q.F. Wang, L.P. Shi, T.C. Chong, Appl. Phys. A 79, 1603 (2004) CrossRefADSGoogle Scholar
  6. 6.
    Z.B. Wang, M.H. Hong, B.S. Luk’yanchuk, Y. Lin, Q.F. Wang, T.C. Chong, J. Appl. Phys. 96, 6845 (2004) CrossRefADSGoogle Scholar
  7. 7.
    H. Takada, M. Obara, Jpn. J. Appl. Phys. 44, 7993 (2005) CrossRefADSGoogle Scholar
  8. 8.
    D. Brodoceanu, L. Landstorm, D. Bäuerle, Appl. Phys. A 86, 313 (2007) CrossRefADSGoogle Scholar
  9. 9.
    W. Guo, Z.B. Wang, L. Li, Z. Liu, B. Luk’yanchuk, D.J. Whitehead, Nanotechnology 19, 455302 (2008) CrossRefADSGoogle Scholar
  10. 10.
    S.M. Huang, Z.A. Wang, Z. Sun, Z.B. Wang, B.S. Luk’yanchuk, Appl. Phys. A 96, 459 (2009) CrossRefADSGoogle Scholar
  11. 11.
    P.R. Krauss, S.Y. Chou, Appl. Phys. Lett. 71, 3174 (1997) CrossRefADSGoogle Scholar
  12. 12.
    M.H. Hong, F. Ma, C.S. Lim, Y. Lin, Z.Q. Huang, L.S. Tan, L.P. Shi, T.C. Chong, in APLS 2008 Int. Conf., Nagoya, Japan, 30 January–1 February 2008 Google Scholar
  13. 13.
    H.L. Chen, S.Y. Chuang, C.H. Lin, Y.H. Lin, Opt. Express 15, 14793 (2007) CrossRefADSGoogle Scholar
  14. 14.
    T. Sakai, N. Nedyalkov, M. Obara, J. Phys. D, Appl. Phys. 40, 7485 (2007) CrossRefADSGoogle Scholar
  15. 15.
    H.-J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, J. Boneberg, J. Microsc. 202, 129 (2001) CrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Mosbacher, H.-J. Münzer, J. Zimmermann, J. Solis, J. Boneberg, P. Leiderer, Appl. Phys. A 72, 41 (2001) CrossRefADSGoogle Scholar
  17. 17.
    Y. Zhou, M.H. Hong, J.Y.H. Fuh, L. Lu, B.S. Luk’yanchuk, Z.B. Wang, L.P. Shi, T.C. Chong, Appl. Phys. Lett. 88, 023110 (2006) CrossRefADSGoogle Scholar
  18. 18.
    Y. Zhou, M.H. Hong, J.Y.H. Fuh, L. Lu, B.S. Luk’yanchuk, Z.B. Wang, J. Alloys Compd. 449, 246 (2008) CrossRefGoogle Scholar
  19. 19.
    T. Sakai, N. Nedyalkov, M. Obara, J. Phys. D, Appl. Phys. 40, 2102 (2007) CrossRefADSGoogle Scholar
  20. 20.
    J. Boneberg, J. Konig-birk, H.-J. Munzer, P. Leiderer, K.L. Shuford, G.C. Schatz, Appl. Phys. A 89, 299 (2007) CrossRefADSGoogle Scholar
  21. 21.
    D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, 2004) Google Scholar
  22. 22.
    X. Ma, J.Q. Lu, R.S. Brock, K.M. Jacobs, P. Yang, X.-H. Hu, Phys. Med. Biol. 48, 4165 (2003) CrossRefGoogle Scholar
  23. 23.
    T. Inagaki, E.T. Arakawa, R.N. Hamm, M.W. Williams, Phys. Rev. B 15, 3243 (1977) CrossRefADSGoogle Scholar
  24. 24.
    W.L. Buck, B.R. Thomas, A. Weinreb, J. Chem. Phys. 48, 549 (1968) CrossRefADSGoogle Scholar
  25. 25.
    E. Adachi, A.S. Dimitrov, K. Nagayama, Langmuir 11, 1057 (1995) CrossRefGoogle Scholar
  26. 26.
    S. Baudach, J. Bonse, W. Kautek, Appl. Phys. A 69, S395 (1999) CrossRefADSGoogle Scholar
  27. 27.
    J. Bonse, P. Rudolph, J. Krüger, S. Baudach, W. Kautek, Appl. Surf. Sci. 154, 659 (2000) CrossRefADSGoogle Scholar
  28. 28.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000) MATHGoogle Scholar
  29. 29.
    K. Sendur, W. Challener, C. Peng, J. Appl. Phys. 96, 2743 (2004) CrossRefADSGoogle Scholar
  30. 30.
    G. Mie, Ann. Phys. (Leipz.) 25, 377 (1908) CrossRefADSGoogle Scholar
  31. 31.
    B.J. Messinger, K.U. von Raben, R.K. Chang, P.W. Barber, Phys. Rev. B 24, 649 (1981) CrossRefADSGoogle Scholar
  32. 32.
    R.H. Boundy, R.F. Boyer, Styrene, its Polymers, Copolymers, and Derivatives (Reinhold, New York, 1952) Google Scholar
  33. 33.
    N. Nedyalkov, H. Takada, M. Obara, Appl. Phys. A 85, 163 (2006) CrossRefADSGoogle Scholar
  34. 34.
    N. Nedyalkov, T. Sakai, T. Miyanishi, M. Obara, J. Phys. D, Appl. Phys. 39, 5037 (2006) CrossRefADSGoogle Scholar
  35. 35.
    T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, M. Obara, J. Phys. D, Appl. Phys. 42, 025502 (2009) CrossRefADSGoogle Scholar
  36. 36.
    D. Eversole, B. Luk’yanchuk, A. Ben-Yakar, Appl. Phys. A 89, 283 (2007) CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Tetsuo Sakai
    • 1
  • Yuto Tanaka
    • 1
  • Yuji Nishizawa
    • 1
  • Mitsuhiro Terakawa
    • 1
  • Minoru Obara
    • 1
  1. 1.Department of Electronics and Electrical Engineering, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations