Advertisement

Applied Physics A

, Volume 100, Issue 1, pp 203–206 | Cite as

Ablation efficiency of α-Al2O3 in liquid phase and ambient air by nanosecond laser irradiation

  • Csaba László Sajti
  • Ramin Sattari
  • Boris Chichkov
  • Stephan Barcikowski
Open Access
Article

Abstract

Ablation efficiency and influences of laser parameters on a material removal rate by a nanosecond laser irradiation of α-Al2O3 are studied in gas and liquid phases. The laser ablation in the air yields maximum material removal rate of 12 ng/pulse using a 4.6-mJ pulse energy at 4-kHz repetition rate, compared to 88 ng/pulse in the water flow. Using a specific interpulse distance and a laser repetition rate further increase material removal rate by factor of 3 and 65, respectively, owing to an optimized lattice temperature and laser pulse interactions with the generated cavitation bubble. For the ablation in the air, these parameters do not significantly affect the ablation efficiency.

Keywords

Laser Ablation Pulse Energy Material Removal Rate Cavitation Bubble Laser Pulse Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Mafunè, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 104, 9111 (2000) CrossRefGoogle Scholar
  2. 2.
    A.V. Simakin, V.V. Voronov, G.A. Shafeev, R. Brayner, F. Bozon-Verduraz, Chem. Phys. Lett. 348 (2001). Google Scholar
  3. 3.
    J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, Appl. Phys. A 80, 753 (2005) CrossRefADSGoogle Scholar
  4. 4.
    J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, Chem. Rev. 107, 2228 (2007) CrossRefGoogle Scholar
  5. 5.
    N. Bärsch, A. Gatti, S. Barcikowski, J. Laser Micro/Nanoeng. 4, 66 (2007) Google Scholar
  6. 6.
    S. Zhu, Y.F. Lu, M.H. Hong, X.Y. Chen, J. Appl. Phys. 89, 2004 (2001) Google Scholar
  7. 7.
    S. Zhu, Y.F. Lu, M.H. Hong, Appl. Phys. Lett. 79, 1396 (2001) CrossRefADSGoogle Scholar
  8. 8.
    T. Tsuji, Y. Tsuboi, Y. Kitamura, N. Tsuji, Appl. Surf. Sci. 229, 365 (2004) CrossRefADSGoogle Scholar
  9. 9.
    T. Tsuji, Y. Okazaki, Y. Tsuboi, M. Tsuji, Jpn. J. Appl. Phys. 46, 1533 (2007) CrossRefADSGoogle Scholar
  10. 10.
    S. Barcikowski, A.M. Menendez, B. Chichkov, M. Brikas, G. Raciukaitis, Appl. Phys. Lett. 91, 83113 (2007) CrossRefGoogle Scholar
  11. 11.
    A. Miotello, R. Kelly, Appl. Phys. A 69, 67 (1999) ADSGoogle Scholar
  12. 12.
    N.M. Bulgakova, A. Bulgakov, Appl. Phys. A 73, 199 (2001) CrossRefADSGoogle Scholar
  13. 13.
    X. Wang, J.D. Shephard, F.C. Dear, D.P. Hand, J. Am. Ceram. Soc. 91, 391 (2008) CrossRefGoogle Scholar
  14. 14.
    F. Mafuné, T. Kondow, Chem. Phys. Lett. 383, 343 (2004) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Csaba László Sajti
    • 1
  • Ramin Sattari
    • 1
  • Boris Chichkov
    • 1
  • Stephan Barcikowski
    • 1
  1. 1.Laser Zentrum Hannover e.V.HannoverGermany

Personalised recommendations